Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4-Mg2NiH4 composites

Xin Zhao , Shu-min Han , Yuan Li , Xiao-cui Chen , Dan-dan Ke

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (4) : 423 -428.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (4) : 423 -428. DOI: 10.1007/s12613-015-1089-8
Article

Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4-Mg2NiH4 composites

Author information +
History +
PDF

Abstract

A composite of LiBH4-Mg2NiH4 doped with 10wt% CeH2.29 was prepared by ball milling followed by dynamic interspace vacuum treatment at 573 K. The introduction of CeH2.29 caused a transformation in the morphology of Mg from complex spongy and lamellar to uniformly spongy, resulting in refined particle size and abundant H diffusion pathways. This LiBH4-Mg2NiH4 + 10wt% CeH2.29 composite exhibited excellent hydrogen storage properties. The starting temperature of rapid H absorption decreased to 375 K in the doped composite from 452 K for the unmodified material, and the onset decomposition temperature of its hydride was reduced from 536 K to 517 K. In addition, the time required for a hydrogen release of 1.5wt% (at 598 K) was 87 s less than that of the un-doped composite.

Keywords

hydrogen storage materials / cerium hydride / mechanical alloying / microstructure

Cite this article

Download citation ▾
Xin Zhao, Shu-min Han, Yuan Li, Xiao-cui Chen, Dan-dan Ke. Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4-Mg2NiH4 composites. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(4): 423-428 DOI:10.1007/s12613-015-1089-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Selvam P, Viswanathan B, Swamy CS, Srinivasan V. Magnesium and magnesium alloy hydrides. Int. J. Hydrogen Energy, 1986, 11(3): 169.

[2]

Mushnikov NV, Ermakov AE, Uimin MA, Gaviko VS, Terent’ev PB, Skripov AV, Tankeev AP, Soloninin AV, Buzlukov AL. Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen. Phys. Met. Metallogr., 2006, 102(4): 421.

[3]

Varin RA, Jang M, Czujko T, Wronski Z. The effect of ball milling under hydrogen and argon on the desorption properties of MgH2 covered with a layer of Mg(OH)2. J. Alloys Compd., 2010, 493(1–2): L29.

[4]

Li LQ, Akiyama T, Yagi J. Activation behaviors of Mg2NiH4 at different hydrogen pressures in hydriding combustion synthesis. Int. J. Hydrogen Energy, 2001, 26(10): 1035.

[5]

Zou JX, Zeng XQ, Ying YJ, Chen X, Gao H, Zhou S, Ding WJ. Study on the hydrogen storage properties of core-shell structured Mg-RE (RE = Nd, Gd, Er) nano-composites synthesized through arc plasma method. Int. J. Hydrogen Energy, 2013, 38(5): 2337.

[6]

Danaie M, Mitlin D. TEM analysis and sorption properties of high-energy milled MgH2 powders. J. Alloys Compd., 2009, 476(1–2): 590.

[7]

Fuster V, Urretavizcaya G, Castro FJ. Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg + C (graphite) mixtures under H2 atmosphere. J. Alloys Compd., 2009, 481(1–2): 673.

[8]

Porcu M, Petford-Long AK, Sykes JM. TEM studies of Nb2O5 catalyst in ball-milled MgH2 for hydrogen storage. J. Alloys Compd., 2008, 453(1–2): 341.

[9]

Polanski M, Bystrzycki J, Plocinski T. The effect of milling conditions on microstructure and hydrogen absorption/desorption properties of magnesium hydride (MgH2) without and with Cr2O3 nanoparticles. Int. J. Hydrogen Energy, 2008, 33(7): 1859.

[10]

Li LQ, Saita I, Saito K, Saito K, Akiyama T. Hydriding combustion synthesis of hydrogen storage alloys of Mg-Ni-Cu system. Intermetallics, 2002, 10(10): 927.

[11]

Saita I, Saito K, Akiyama T. Hydriding combustion synthesis of Mg2Ni1−xFex hydride. J. Alloys Compd., 2005, 390(1–2): 265.

[12]

Gu H, Zhu YF, Li LQ. Hydrogen storage properties of Mg-30wt.% LaNi5 composite prepared by hydriding combustion synthesis followed by mechanical milling (HCS + MM). Int. J. Hydrogen Energy, 2009, 34(3): 1405.

[13]

Pei LC, Han SM, Wang JS, Hu L, Zhao X, Liu BZ. Hydrogen storage properties and phase structures of RMg2Ni (R = La, Ce, Pr, Nd) alloys. Mater. Sci. Eng. B, 2012, 177(18): 1589.

[14]

Long S, Zou JX, Liu YN, Zeng XQ, Ding WJ. Hydrogen storage properties of a Mg-Ce oxide nano-composite prepared through arc plasma method. J. Alloys Compd., 2013, 580(Suppl.): 167.

[15]

Vajo JJ, Li W, Liu P. Thermodynamic and kinetic destabilization in LiBH4/Mg2NiH4: promise for borohydride-based hydrogen storage. Chem. Commun., 2010, 46(36): 6687.

[16]

Zhao X, Han SM, Zhu XL, Liu BZ, Liu YQ. Investigations on hydrogen storage properties of Mg2Ni + x wt% LaMg2Ni (x = 0, 10, 20, 30) composites. J. Solid State Chem., 2012, 190, 68.

[17]

Reshak AH. MgH2 and LiH metal hydrides crystals as novel hydrogen storage material: electronic structure and optical properties. Int. J. Hydrogen Energy, 2013, 38(27): 11946.

[18]

Jia YH, Han SM, Zhang W, Zhao X, Sun PF, Liu YQ, Shi H, Wang JS. Hydrogen absorption and desorption kinetics of MgH2 catalyzed by MoS2 and MoO2. Int. J. Hydrogen Energy, 2013, 38(5): 2352.

[19]

Cheung S, Deng WQ, van Duin AC, Goddard WA. ReaxFFMgH reactive force field for magnesium hydride systems. J. Phys. Chem. A, 2005, 109(5): 851.

[20]

Rashidi AM, Nouralishahi A, Khodadadi AA, Mortazavi Y, Karimi A, Kashefi K. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage. Int. J. Hydrogen Energy, 2010, 35(17): 9489.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/