Solid fraction evolution characteristics of semi-solid A356 alloy and in-situ A356-TiB2 composites investigated by differential thermal analysis

S. Deepak Kumar , A. Mandal , M. Chakraborty

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (4) : 389 -394.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (4) : 389 -394. DOI: 10.1007/s12613-015-1084-0
Article

Solid fraction evolution characteristics of semi-solid A356 alloy and in-situ A356-TiB2 composites investigated by differential thermal analysis

Author information +
History +
PDF

Abstract

The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature relationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using differential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2°C and 3°C in liquidus temperatures and a variation of 3°C and 5°C in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction (f s) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.

Keywords

particle reinforced composites / aluminum alloys / titanium boride / casting / solid fraction / differential thermal analysis

Cite this article

Download citation ▾
S. Deepak Kumar, A. Mandal, M. Chakraborty. Solid fraction evolution characteristics of semi-solid A356 alloy and in-situ A356-TiB2 composites investigated by differential thermal analysis. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(4): 389-394 DOI:10.1007/s12613-015-1084-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tahamtan S, Golozar MA, Karimzadeh F, Niroumand B. Microstructure and tensile properties of thixoformed A356 alloy. Mater. Charact., 2008, 59(3): 223.

[2]

Atkinson HV. Modelling the semisolid processing of metallic alloys. Prog. Mater. Sci., 2005, 50(3): 341.

[3]

Fan Z. Semisolid metal processing. Int. Mater. Rev., 2002, 47(2): 1.

[4]

Robert MH, Zoqui EJ, Tanabe F, Motegi T. Producing thixotropic semi-solid A356 alloy: microstructure formation x forming behaviour. J. Achiev. Mater. Manuf. Eng., 2007, 20(1–2): 19.

[5]

Haga T, Suzuki S. Casting of aluminum alloy ingots for thixoforming using a cooling slope. J. Mater. Process. Technol., 2001, 118(1–3): 169.

[6]

Birol Y. A357 thixoforming feedstock produced by cooling slope casting. J. Mater. Process. Technol., 2007, 186(1–3): 94.

[7]

Bayoumi MA, Negm MI, El-Gohry AM. Microstructure and mechanical properties of extruded Al-Si alloy (A356) in the semi-solid state. Mater. Des., 2009, 30(10): 4469.

[8]

Paes M, Zoqui EJ. Semi-solid behavior of new Al-Si-Mg alloys for thixoforming. Mater. Sci. Eng. A, 2005, 406(1–2): 63.

[9]

Lakshmi S, Lu L, Gupta M. In situ preparation of TiB2 reinforced Al based composites. J. Mater. Process. Technol., 1998, 73(1–3): 160.

[10]

Mandal A, Maiti R, Chakraborty M, Murty BS. Effect of TiB2 particles on aging response of Al-4Cu alloy. Mater. Sci. Eng. A, 2004, 386(1): 296.

[11]

Mandal A, Chakraborty M, Murty BS. Ageing behaviour of A356 alloy reinforced with in-situ formed TiB2 particles. Mater. Sci. Eng. A, 2008, 489(1–2): 220.

[12]

Kumar S, Subramanya Sarma V, Murty BS. A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles. Mater. Sci. Eng. A, 2008, 476(1–2): 333.

[13]

Ramesh CS, Jagadeesh SK, Keshavamurthy R. Solidification studies on sand cast Al 6061-SiCp composites. J. Alloys Compd., 2011, 509(Suppl.1): S371.

[14]

Jeng SC, Chen SW. The solidification characteristics of 6061 and A356 aluminum alloys and their ceramic particle-reinforced composites. Acta Mater., 1997, 45(12): 4887.

[15]

Birol Y. Solid fraction analysis with DSC in semi-solid metal processing. J. Alloys Compd., 2009, 486(1–2): 173.

[16]

Klancnik G, Medved J, Mrvar P. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation. RMZ Mater. Geoenviron., 2010, 57(1): 127.

[17]

Gowri S, Samuel FH. Effect of cooling rate on the solidification behavior of Al-7 Pct Si-SiCp metal-matrix composites. Metall. Trans. A, 1992, 23(12): 3369.

[18]

Kaufmann H, Neuworth E, Larcher J, Pacyna H. Quality control for casting particulate reinforced aluminium alloys. Proceedings of 3rd International Conference on Aluminium Alloys, Trondheim, Norway, 1992 81.

[19]

Egizabal P. Influence of Titanium Diboride (TiB 2) Particles on the Microstructure and Properties of Reinforced Al-Si7Mg0.3 and Al-Cu5MgTi Alloys for Plaster Casting Applications [Dissertation], 2007 176.

[20]

Marchwica P, Sokolowski JH, Kierkus WT. Fraction solid evolution characteristics of AlSiCu alloys: dynamic baseline approach. J. Achiev. Mater. Manuf. Eng., 2011, 47(2): 115.

[21]

Backerud L, Chai G, Tamminen J. Solidification Characteristics of Aluminum Alloys, 1990 128.

[22]

Chen ZW, Li JS, Jie WQ, Liu L, Fu HZ. Solidification behaviour of Al-7%Si-Mg casting alloys. Trans. Nonferrous Met. Soc. China, 2005, 15(1): 40.

[23]

Ravi KR, Pillai RM, Pai BC, Chakraborty M. A novel approach for extracting and characterizing interfacial reaction products in Al-SiCp composites. Metall. Mater. Trans. A, 2007, 38, 1666.

[24]

Das P, Samanta SK, Chattopadhyay H, Dutta P. Effect of pouring temperature on cooling slope casting of semi-solid Al-Si-Mg alloy. Acta Metall. Sin. Eng. Lett., 2012, 25(5): 329.

[25]

Wannasin J, Thanabumrungkul S. Development of a semi-solid metal processing technique for aluminium casting applications. Songklanakarin J. Sci. Technol., 2008, 30(2): 215.

[26]

Siddhalingeshwar IG, Herbert MA, Chakraborty M, Mitra R. Effect of mushy state rolling on age-hardening and tensile behavior of Al-4.5Cu alloy and in situ Al-4.5Cu-5TiB2 composite. Mater. Sci. Eng. A, 2011, 528(3): 1787.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/