Influence of ECAP on the fatigue behavior of age-hardenable 2xxx aluminum alloy

M. Namdar , S. A. Jenabali Jahromi

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (3) : 285 -291.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (3) : 285 -291. DOI: 10.1007/s12613-015-1072-4
Article

Influence of ECAP on the fatigue behavior of age-hardenable 2xxx aluminum alloy

Author information +
History +
PDF

Abstract

The fatigue behavior under load control and the mechanical properties of commercial 2011 aluminum as an age-hardenable Al alloy was studied. To estimate the effects of the equal channel angular pressing (ECAP) process, solution heat treatments, and aging on the fatigue life, tests were conducted at four different stages: furnace cooling; furnace cooling plus one ECAP pass; solid solution heat treatment, quenching, one ECAP pass plus aging at peak age level; and the T6 condition. Only one pass was possible at room temperature because of the high strength of the material. The fracture surface morphology and microstructure after fatigue were evaluated by scanning electron microscopy (SEM). The experimental results revealed that the optimum fatigue life under load control, the tensile strength, and the Vickers hardness of the material were interdependent. The optimum fatigue life under load control was achieved by increasing the tensile strength and hardness of the material.

Keywords

aluminum alloys / equal channel angular pressing / precipitation / mechanical properties / fatigue life

Cite this article

Download citation ▾
M. Namdar, S. A. Jenabali Jahromi. Influence of ECAP on the fatigue behavior of age-hardenable 2xxx aluminum alloy. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(3): 285-291 DOI:10.1007/s12613-015-1072-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM, 2006, 58(4): 33.

[2]

Estrin Y, Vinogradov A. Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: an overview. Int. J. Fatigue, 2010, 32(6): 898.

[3]

Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A. Severe plastic deformation (SPD) processes for metals. CIRP Ann. Manuf. Technol., 2008, 57(2): 716.

[4]

Furukawa M, Horita Z, Nemoto M, Langdon TG. Review: processing of metals by equal-channel angular pressing. J. Mater. Sci., 2001, 36(12): 2835.

[5]

Nakashima K, Horita Z, Nemoto M, Langdon TG. Development of a multi-pass facility for equal-channel angular pressing to high total strains. Mater. Sci. Eng. A, 2000, 281(1–2): 82.

[6]

Vinogradov A, Hashimoto S, Kopylov VI. Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni Invar al loy. Mater. Sci. Eng. A, 2003, 355(1–2): 277.

[7]

Zheng LJ, Chen CQ, Zhou TT, Liu PY, Zeng MG. Structure and properties of ultrafine-grained Al-Zn-Mg-Cu and Al-Cu-Mg-Mn alloys fabricated by ECA pressing combined with thermal treatment. Mater. Charact., 2002, 49(5): 455.

[8]

Chang JY, Shan A. Microstructure and mechanical properties of AlMgSi alloys after equal channel angular pressing at room temperature. Mater. Sci. Eng. A, 2003, 347(1–2): 165.

[9]

Hanlon T, Tabachnikova ED, Suresh S. Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue, 2005, 27(10–12): 1147.

[10]

Vinogradov A, Nagasaki S, Patlan V, Kitagawa K, Kawazoe M. Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing. Nanostruct. Mater., 1999, 11(7): 925.

[11]

Vinogradov A, Washikita A, Kitagawa K, Kopylov VI. Fatigue life of fine-grain Al-Mg-Sc alloys produced by equal-channel angular pressing. Mater. Sci. Eng. A, 2003, 349(1–2): 318.

[12]

Abarghouie SMR M, Reihani SMS. Aging behavior of a 2024 Al alloy-SiCp composite. Mater. Des., 2010, 31(5): 2368.

[13]

Vaseghi M, Taheri AK, Hong SI, Kim HS. Dynamic ageing and the mechanical response of Al-Mg-Si alloy through equal channel angular pressing. Mater. Des., 2010, 31(9): 4076.

[14]

Roven HJ, Nesboe H, Werenskiold JC, Seibert T. Mechanical properties of aluminium alloys processed by SPD: comparison of different alloy systems and possible product areas. Mater. Sci. Eng. A, 2005, 410–411, 426.

[15]

Kim WJ, Wang JY. Microstructure of the post-ECAP aging processed 6061 Al alloys. Mater. Sci. Eng. A, 2007, 464(1s-2): 23.

[16]

Hübner P, Kiessling R, Biermann H, Hinkel T, Jungnickel W, Kawalla R, Höppel HW, May J. Static and cyclic crack growth behavior of ultrafine-grained al produced by different severe plastic deformation methods. Metall. Mater. Trans. A, 2007, 38(9): 1926.

[17]

Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci., 2006, 51(7): 881.

[18]

Kim WJ, Kim JK, Park TY, Hong SI, Kim DI, Kim YS, Lee JD. Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing. Metall. Mater. Trans. A, 2002, 33(10): 3155.

[19]

Cardoso KR, Travessa DN, Botta WJ, Jorge AM Jr. High strength AA7050 Al alloy processed by ECAP: microstructure and mechanical properties. Mater. Sci. Eng. A, 2011, 528(18): 5804.

[20]

Vaseghi M, Kim HS. A combination of severe plastic deformation and ageing phenomena in Al-Mg-Si Alloys. Mater. Des., 2012, 36, 735.

[21]

Cai M, Field DP, Lorimer GW. A systematic comparison of static and dynamic ageing of two Al-Mg-Si alloys. Mater. Sci. Eng. A, 2004, 373(1–2): 65.

[22]

Chen LJ, Ma CY, Stoica GM, Liaw PK, Xu C, Langdon TG. Mechanical behavior of a 6061 Al alloy and an Al2O3/6061 Al composite after equal-channel angular processing. Mater. Sci. Eng. A, 2005, 410–411, 472.

[23]

Roshan MR, Jahromi SAJ, Ebrahimi R. Predicting the critical pre-aging time in ECAP processing of age-hardenable aluminum alloys. J. Alloys Compd., 2011, 509(30): 7833.

[24]

Ferrasse S, Segal VM, Hartwig KT, Goforth RE. Development of a submicrometer-grained microstructure in aluminum 6061 using equal channel angular extrusion. J. Mater. Res., 1997, 12(5): 1253.

[25]

Duan ZC, Chinh NQ, Xu C, Langdon TG. Developing processing routes for the equal-channel angular pressing of age-hardenable aluminum alloys. Metall. Mater. Trans. A, 2010, 41(4): 802.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/