Structural, microstructural, and thermal characterizations of a chalcopyrite concentrate from the Singhbhum shear zone, India

Ritayan Chatterjee , Shamik Chaudhuri , Saikat Kumar Kuila , Dinabandhu Ghosh

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (3) : 225 -232.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (3) : 225 -232. DOI: 10.1007/s12613-015-1065-3
Article

Structural, microstructural, and thermal characterizations of a chalcopyrite concentrate from the Singhbhum shear zone, India

Author information +
History +
PDF

Abstract

The structural and morphological characterizations of a chalcopyrite concentrate, collected from the Indian Copper Complex, Ghatshila, India, were carried out by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The concentrate powder was composed mainly of free chalcopyrite and low quartz in about 3:1 weight ratio. The particle size was about 100 μm. Spectroscopic studies (FTIR, Raman, UV-visible) of the concentrate supported the XRD findings, and also revealed a marginal oxidation of the sulfide phase. The energy band gap of the sulfide was found to be 3.4 eV. Differential thermal analysis and thermogravimetry of the concentrate showed a decomposition of chalcopyrite at 658 K with an activation energy of 208 kJ·mol−1, and two successive structural changes of silica at 848 K and 1145 K.

Keywords

chalcopyrite / structural properties / microstructure / thermal characteristics

Cite this article

Download citation ▾
Ritayan Chatterjee, Shamik Chaudhuri, Saikat Kumar Kuila, Dinabandhu Ghosh. Structural, microstructural, and thermal characterizations of a chalcopyrite concentrate from the Singhbhum shear zone, India. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(3): 225-232 DOI:10.1007/s12613-015-1065-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nesse WD. Introduction to Mineralogy, 2000, Oxford, Oxford University Press, 1.

[2]

Baba AA, Ayinla KI, Adekola FA, Bale RB, Ghosh MK, Alabi AGF, Sheik AR, Folorunso IO. Hydrometallurgical application for treating a Nigerian chalcopyrite ore in chloride medium: Part I. Dissolution kinetics assessment. Int. J. Miner. Metall. Mater., 2013, 20(11): 1021.

[3]

Chatterjee R, Ghosh D. Characterization of Cu-SiO2 composite synthesized by hydrogen reduction of chalcopyrite concentrate followed by acid leaching. Metall. Mater. Trans. B, 2013, 44(5): 1049.

[4]

Baba AA, Ayinla KI, Adekola FA, Ghosh MK, Ayanda OS, Bale RB, Sheik AR, Pradhan SR. A review on novel techniques for chalcopyrite ore processing. Int. J. Min. Eng. Miner. Process., 2012, 1(1): 1.

[5]

Bail A L, Duroy H, Fourquet JL. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bull., 1988, 23(3): 447.

[6]

Petricek V, Dusek M, Palatinus L. JANA2006 The Crystallographic Computing System, 2011, Praha, Czech Republic, Institute of Physics

[7]

Baláž P. Mechanochemistry in Nanoscience and Minerals Engineering, 2008 136.

[8]

Omori K. Science Reports, 1964 65.

[9]

Omori K. Science Reports, 1961, 7, 101.

[10]

Leppinen J. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals. Int. J. Miner. Process., 1990, 30(3–4): 245.

[11]

Sepehrian DH, Khanchi AR, Rofouei MK, Husain SW. Non-thermal synthesis of mesoporous zirconium silicate and its characterization. J. Iran. Chem. Soc., 2006, 3, 253.

[12]

Gadsen JA. Infrared Spectra of Minerals and Related Inorganic Compounds, 1975, London, Butterworths, 46.

[13]

Ishizaki T, Saito N, Inoue Y, Bekke M, Takai O. Fabrication and characterization of ultra-water-repellent alumina-silica composite films. J. Phys. D., 2007, 40, 192.

[14]

Beran A, Giester G, Libowitzky E. The hydrogen bond system in natrochalcite-type compounds: an FTIR spectroscopic study of the H3O2 unit. Mineral. Petrol., 1997, 61(1–4): 223.

[15]

Appl. Phys. Lett., 2011, 98(18)

[16]

Reddy G U, Seshamaheswaramma K, Nakamura Y, Reddy S L, Frost RL, Endo T. Electron paramagnetic resonance, optical absorption and Raman spectral studies on a pyrite/chalcopyrite mineral. Spectrochim. Acta Part A, 2012, 96, 310.

[17]

Ozin GA. The single-crystal Raman spectrum of rhombic sulphur. J. Chem. Soc. A, 1969 116.

[18]

Harvey PD, Butler IS. Raman spectra of orthorhombic sulfur at 40 K. J. Raman Spectrosc., 1986, 17(4): 329.

[19]

Gillet P, Le Cléac’h A, Madon M. High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures. J. Geophys. Res., 1990, 95(B13): 21635.

[20]

Hemley RJ. Pressure dependence of Raman spectra of SiO2 polymorphs: alpha-quartz, coesite and stishovite. High-Pressure Research in Mineral Physics: a Volume in Honor of Syun-iti Akimoto, 2013 347.

[21]

Disale SD, Garje SS. A convenient synthesis of nanocrystalline chalcopyrite, CuFeS2 using single-source precursors. Appl. Organomet. Chem., 2009, 23(12): 492.

[22]

Prameena B, Anbalagan G, Gunasekaran S, Ramkumaar GR, Gowtham B. Structural, optical, electron paramagnetic, thermal and dielectric characterization of chalcopyrite. Spectrochim. Acta Part A, 2014, 122, 348.

[23]

Sherman DM, Waite TD. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am. Mineral., 1985, 70(11–12): 1262.

[24]

Roine A. Outokumpu HSC Chemistry for Windows: Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, Pori, Finland, 1999

[25]

Okamoto H. O-Si (oxygen-silicon). J. Phase Equilib.Diffus., 2007, 28, 309.

[26]

Kim S, Park JK. Characterization of thermal reaction by peak temperature and height of DTG curves. Thermochim. Acta, 1995, 264, 137.

[27]

Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand., 1966, 70A(6): 487.

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/