Influence of sintering temperature on the thermoelectric properties of Ba8Ga16Si30 clathrate treated by spark plasma sintering

Li-hua Liu , Feng Li , Ning Chen , Hong-mei Qiu , Guo-hui Cao , Yang Li

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (1) : 78 -85.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (1) : 78 -85. DOI: 10.1007/s12613-015-1046-6
Article

Influence of sintering temperature on the thermoelectric properties of Ba8Ga16Si30 clathrate treated by spark plasma sintering

Author information +
History +
PDF

Abstract

A series of Ba8Ga16Si30 clathrate samples were prepared by arc melting, ball milling, acid washing, and spark plasma sintering (SPS). X-ray diffraction analysis revealed that the lattice of the Ba8Ga16Si30 samples expanded as the SPS temperature was increased from 400 to 750°C. Lattice contraction recurred when the SPS temperature was further increased in the range of 750–1000°C. This phenomenon can be explained by the variation of Ga content in the lattice. The thermoelectric figure of the merit ZT value of clathrates increased with the increase in SPS temperature and reached a maximum when the sample was subjected to SPS at 800°C. A further increase in SPS temperature did not contribute to the improvement of ZT. The variation of the lattice parameter a vs. SPS temperature T was similar to the variation observed in the ZT-T curve.

Keywords

clathrate compounds / thermoelectricity / sintering temperature / spark plasma sintering / lattice constants

Cite this article

Download citation ▾
Li-hua Liu, Feng Li, Ning Chen, Hong-mei Qiu, Guo-hui Cao, Yang Li. Influence of sintering temperature on the thermoelectric properties of Ba8Ga16Si30 clathrate treated by spark plasma sintering. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(1): 78-85 DOI:10.1007/s12613-015-1046-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bobev S, Sevov SC. Clathrates of group 14 with alkali metals: an exploration. J. Solid State Chem., 2000, 153(1): 92.

[2]

Liu JP, Fullerton E, Gutfleisch O, Sellmyer DJ. Nanoscale Magnetic Materials and Applications, 2009, New York, Springer, 105.

[3]

Cohn JL, Nolas GS, Fessatidis V, Metcalf TH, Slack GA. Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett., 1999, 82, 779.

[4]

Nolas GS, Weakley TJR, Cohn JL, Sharma R. Structural properties and thermal conductivity of crystalline Ge clathrates. Phys. Rev. B, 2000, 61, 3845.

[5]

Roy SB, Sim KE, Caplin AD. The insulator-to-metal transition in Si-Na’ clathrate’ compounds: a search for superconductivity. Philos. Mag. B, 1992, 65(6): 1445.

[6]

Tse JS, Uehara K, Rosseau R, Ker A, Ratcliffe CI, White MA, MacKay G. Structural principles and amorphouslike thermal conductivity of Na-doped Si clathrates. Phys. Rev. Lett., 2000, 85, 114.

[7]

Iversen BB, Palmqvist AEC, Cox DE, Nolas GS, Stucky GD, Blake NP, Metiu H. Why are clathrates good candidates for thermoelectric materials?. J. Solid State Chem., 2000, 149(2): 455.

[8]

Rowe DW. CRC Handbook of Thermoelectrics, 1995, Boca Raton, CRC Press, 407.

[9]

A. Bentien, E. Nishibori, S. Paschen, and B.B. Iversen, Crystal structures, atomic vibration, and disorder of the type-I thermoelectric clathrates Ba8Ga16Si30, Ba8Ga16Ge30, Ba8In16Ge30, and Sr8Ga16Ge30, Phys. Rev. B, 71(2005), art. No. 144107.

[10]

Bentien A, Iversen BB, Bryan JD, Stucky GD, Palmqvist AEC, Schultz AJ, Henning RW. Maximum entropy method analysis of thermal motion and disorder in thermoelectric clathrate Ba8Ga16Si30. J. Appl. Phys., 2002, 91, 5694.

[11]

L.Y. Qiu, I.P. Swainson, G.S. Nolas, and M.A. White, Structure, thermal, and transport properties of the clathrates Sr8Zn8Ge38, Sr8Ga16Ge30, and Ba8Ga16Si30, Phys. Rev. B, 70(2004), art. No. 035208.

[12]

W.P. Gou, Y. Li, J. Chi, J.H. Ross Jr., M. Beekman, and G.S. Nolas, NMR study of slow atomic motion in Sr8Ga16Ge30 clathrate, Phys. Rev. B, 71(2005), art. No. 174307.

[13]

R. Hermann, V. Keppens, P. Bonville, G.S. Nolas, F. Grandjean, G.J. Long, H.M. Christen, B.C. Chakoumakos, B.C. Sales, and D. Mandrus, Direct experimental evidence for atomic tunneling of europium in crystalline Eu8Ga16Ge30, Phys. Rev. Lett., 97(2006), art. No. 017401.

[14]

Nolas GS, Slack GA, Schujman SB. Semiconductors and Semimetals, 2000, San Diego, Academic Press, 255.

[15]

Nolas GS, Cohn JL, Slack GA, Schujman SB. Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl. Phys. Lett., 1998, 73, 178.

[16]

A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, and G.D. Stucky, Large thermoelectric figure of merit at high temperature in Czochralski grown clathrate Ba8Ga16Ge30, J. Appl. Phys., 99(2006), art. No. 023708.

[17]

Kuznetsov VL, Kuznetsova LA, Kaliazin AE, Rowe DM. Preparation and thermoelectric properties of A8 IIB16 III B30 IV clathrate compounds. J. Appl. Phys., 2000, 87, 7871.

[18]

Anno H, Hokazono M, Shirataki R, Nagami Y. Crystallographic, thermoelectric, and mechanical properties of polycrystalline type-I Ba8Al16Si30-based clathrates. J. Mater. Sci., 2013, 48, 2846.

[19]

Anno H, Yamada H, Nakabayashi T, Hokazono M, Shirataki R. Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba8GaxSi46−x (nominal x = 14–18) clathrates prepared by combining arc melting and spark plasma sintering methods. J. Solid State Chem., 2012, 193, 94.

[20]

H. Anno, H. Yamada, T. Nakabayashi, M. Hokazono, and R. Shirataki, Influence of preparation conditions on thermoelectric properties of Ba8Ga16Si30 clathrate by combining arc melting and spark plasma sintering methods, J. Phys. Conf. Ser., 379(2012), art. No. 012007.

[21]

Blake NP, Bryan D, Latturner S, Møllnitz L, Stucky GD, Metiu H. Structure and stability of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J. Chem. Phys., 2001, 114, 10063.

[22]

Deng SK, Tang XF, Tang RS. Synthesis and high temperature thermoelectric transport properties of Si-based type-I clathrates. Chin. Phys. B, 2009, 18, 3084.

[23]

B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thomson, and D. Mandrus, Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X=Eu, Sr, Ba) single crystals, Phys. Rev. B, 63(2001), art. No. 245113.

[24]

Lu X, Zhao LH, Zhu LP, Zhang B, Qu XH. High-temperature mechanical properties and deformation behavior of high Nb containing TiAl alloys fabricated by spark plasma sintering. Int. J. Miner. Metall. Mater., 2012, 19, 354.

[25]

Chu K, Jia CC, Liang XB, Chen H. Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Int. J. Miner. Metall. Mater., 2010, 17, 234.

[26]

Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 1992, 64, 1045.

[27]

Toby BH. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr, 2001, 34, 210.

[28]

Y. Li, R.H. Zhang, Y. Liu, N. Chen, Z.P. Luo, X.Q. Ma, G.H. Cao, Z.S. Feng, C.R. Hu, and J.H. Ross, Superconductivity in gallium-substituted Ba8Si46 clathrates, Phys. Rev. B, 75(2007), art. No. 054513.

[29]

D. Cederkrantz, A. Saramat, G.N. Snyder, and A.E.C. Palmqvist, Thermal stability and thermoelectric properties of p-type Ba8Ga16Ge30 clathrates, J. Appl. Phys., 106(2009), art. No. 074509.

[30]

Blake NP, Latturner S, Bryan JD, Stucky GD, Metiu H. Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. J. Chem. Phys., 2001, 115, 8060.

[31]

R. Shirataki, M. Hokazona, T. Nakabayashi, and H. Anno, Preparation and characterization of planetary ball milled Si-based clathrates and their spark plasma sintered materials, IOP Conf. Ser. Mater. Sci. Eng., 18(2011), art. No. 142012.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/