Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy

Chun-mei Li , Nan-pu Cheng , Zhi-qian Chen , Ning Guo , Su-min Zeng

International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (1) : 68 -77.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2015, Vol. 22 ›› Issue (1) : 68 -77. DOI: 10.1007/s12613-015-1045-7
Article

Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy

Author information +
History +
PDF

Abstract

An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mechanical properties of the Al alloy. Both Guinier-Preston (GP) zones and a metastable η′ phase were observed by high-resolution transmission electron microscopy. The phenomenon of the second precipitation of the GP zones in samples subjected to DCT after being aged was observed. The viability of this phase transformation was also demonstrated by first-principles calculations.

Keywords

aluminum alloys / cryogenic treatment / phase transformation / microstructure

Cite this article

Download citation ▾
Chun-mei Li, Nan-pu Cheng, Zhi-qian Chen, Ning Guo, Su-min Zeng. Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(1): 68-77 DOI:10.1007/s12613-015-1045-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mai Hoa LT. Structural properties and evaluation of crystal fraction by cryogenic heat capacity measurements of Fe-based nanocrystalline alloy. J. Alloys Compd., 2006, 420(1–2): 50.

[2]

Bensely A, Prabhakaran A, Mohan Lal D, Nagarajan G. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics, 2005, 45(12): 747.

[3]

Darwin JD, Mohan Lal D, Nagarajan G. Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method. J. Mater. Process. Technol., 2008, 195(1–3): 241.

[4]

Akhbarizadeh A, Amini K, Javadpour S. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel. Mater. Des., 2012, 41, 114.

[5]

Farhani F, Niaki KS, Vahdat SE, Firozi A. Study of effects of deep cryotreatment on mechanical properties of 1.2542 tool steel. Mater. Des., 2012, 42, 279.

[6]

Bensely A, Senthilkumar D, Lal DM, Nagarajan G, Rajadurai A. Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17. Mater. Charact., 2007, 58(5): 485.

[7]

Tyshchenko AI, Theisen W, Oppenkowski A, Siebert S, Razumov ON, Skoblik AP, Sirosh VA, Petrov YuN, Gavriljuk VG. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Mater. Sci. Eng. A, 2010, 527(26): 7027.

[8]

Li SH, Min N, Li JW, Wu XC, Li CH, Tang LL. Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method. Mater. Sci. Eng. A, 2013, 575, 51.

[9]

Rao PN, Jayaganthan R. Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy. Mater. Des., 2012, 39, 226.

[10]

Subramanya Sarma V, Wang J, Jian WW, Kauffmann A, Conrad H, Freudenberger J, Zhu YT. Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals. Mater. Sci. Eng. A, 2010, 527(29–30): 7624.

[11]

Subramanya Sarma V, Jian WW, Wang J, Conrad H, Zhu YT. Effect of rolling temperature on the evolution of defects and properties of an Al-Cu alloy. J. Mater. Sci., 2010, 45(17): 4846.

[12]

Lulay KE, Khan K, Chaaya D. The effect of cryogenic treatments on 7075 aluminum alloy. J. Mater. Eng. Perform., 2002, 11(5): 479.

[13]

Amuda MOH, Mridha S. Comparative evaluation of grain refinement in AISI 430 FSS welds by elemental metal powder addition and cryogenic cooling. Mater. Des., 2012, 35, 609.

[14]

Ma GZ, Chen D, Chen ZH, Li W. Effect of cryogenic treatment on microstructure and mechanical behaviors of the Cu-based bulk metallic glass matrix composite. J. Alloys Compd., 2010, 505(1): 319.

[15]

Panigrahi SK, Jayaganthan R. Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling. Mater. Des., 2011, 32(6): 3150.

[16]

Panigrahi SK, Jayaganthan R. Development of ultrafine-grained Al 6063 alloy by cryorolling with the optimized initial heat treatment conditions. Mater. Des., 2011, 32(4): 2172.

[17]

Baldissera P. Deep cryogenic treatment of AISI 302 stainless steel: Part I. Hardness and tensile properties. Mater. Des., 2010, 31(10): 4725.

[18]

Baldissera P, Delprete C. Deep cryogenic treatment of AISI 302 stainless steel: Part II. Fatigue and corrosion. Mater. Des., 2010, 31(10): 4731.

[19]

Su LH, Lu C, He LZ, Zhang LC, Guagliardo P, Tieu AK, Samarin SN, Williams JF, Li HJ. Study of vacancy-type defects by positron annihilation in ultrafine-grained aluminum severely deformed at room and cryogenic temperatures. Acta Mater., 2012, 60(10): 4218.

[20]

Asl KM, Tari A, Khomamizadeh F. Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy. Mater. Sci. Eng. A, 2009, 523(1–2): 27.

[21]

Liu Y, Shao S, Xu CS, Yang XJ, Lu DP. Enhancing wear resistance of Mg-Zn-Gd alloy by cryogenic treatment. Mater. Lett., 2012, 76, 201.

[22]

Ma GZ, Chen D, Jiang Y, Li W. Cryogenic treatment-induced martensitic transformation in Cu-Zr-Al bulk metallic glass composite. Intermetallics, 2010, 18(6): 1254.

[23]

Zhang CL, Han PD, Zhang ZX, Dong MH, Zhang LL, Gu XY, Yang YQ, Xu BS. T Transformation of the θ-phase in Mg-Li-Al alloys: a density functional theory study. J. Mol. Model., 2012, 18(3): 1123.

[24]

J. Phys. D, 2009, 42(12)

[25]

C.L. Zhang, P.D. Han, J.M. Li, M. Chi, L.Y. Yan, Y.P. Liu, X.G. Liu, and B.S. Xu, First-principles study of the mechanical properties of NiAl microalloyed by M(Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd), J. Phys. D, 41(2008), art. No. 095410.

[26]

Hu XL, Liu X, Xu Z, Liang JC, Wang TM. First-principles investigation of the effects of B impurities on the mechanical properties of NiAl intermetallics. Sci. China Phys. Mech. Astron., 2011, 54(5): 809.

[27]

Zhang JJ, Chen Z, Wang YX, Liu B. Gibbs free energy calculation of Al-Cu-Li alloy with the effect of electric field from electron level. J. Alloys Compd., 2008, 457(1): 526.

[28]

Mogulkoc Y, Ciftci YO, Colakoglu K, Deligoz E. The structural, electronic, elastic, vibration and thermodynamic properties of GdMg. Solid State Sci., 2013, 16, 168.

[29]

Stiller K, Warren PJ, Hansen V, Angenete J, Gjønnes J. Investigation of precipitation in an Al-Zn-Mg alloy after two-step aging treatment at 100 and 150°C. Mater. Sci. Eng. A, 1999, 270(1): 55.

[30]

Berg LK, Gjønnes J, Hansen V, Li XZ, Knutson-Wedel M, Waterloo G, Schryvers D, Wallenberg LR. GP-zones in Al-Zn-Mg alloys and their role in artificial aging. Acta Mater., 2001, 49(17): 3443.

[31]

Zhirafar S, Rezaeian A, Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel. J. Mater. Process. Technol., 2007, 186(1–3): 298.

[32]

Li XZ, Hansen L, GjØnnes J, Wallenberg LR. HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al-Zn-Mg alloys. Acta Mater., 1999, 47(9): 2651.

[33]

Kverneland A, Hansen V, Vincent R, Gjønnes K, Gjønnes J. Structure analysis of embedded nano-sized particles by precession electron diffraction. η′-precipitate in an Al-Zn-Mg alloy as example. Ultramicroscopy, 2006, 106(6): 492.

[34]

Engdahl T, Hansen V, Warren PJ, Stiller K. Investigation of fine scale precipitates in Al-Zn-Mg alloys after various heat treatments. Mater. Sci. Eng. A, 2002, 327(1): 59.

[35]

Werenskiold JC, Deschamps A, Bréchet Y. Characterization and modeling of precipitation kinetics in an Al-Zn-Mg alloy. Mater. Sci. Eng. A, 2000, 293(1–2): 267.

[36]

Chen JZ, Zhen L, Yang SJ, Shao WZ, Dai SL. Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy. Mater. Sci. Eng. A, 2009, 500(1–2): 34.

[37]

Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050). Acta Mater., 2004, 52(15): 4503.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/