Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons

V. G. Efremenko , K. Shimizu , A. P. Cheiliakh , T. V. Kozarevskaya , K. Kusumoto , K. Yamamoto

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (11) : 1096 -1108.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (11) : 1096 -1108. DOI: 10.1007/s12613-014-1014-6
Article

Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons

Author information +
History +
PDF

Abstract

The objective of this investigation is to study the influence of vanadium (5.0wt%–10.0wt%) and chromium (0–9.0wt%) on the microstructure and hardness of Cr-V-Mn-Ni white cast irons with spheroidal vanadium carbides. The alloys’ microstructural features are presented and discussed with regard to the distribution of phase elements. The structural constituents of the alloys are spheroidal VC, proeutectoid cementite, ledeburite eutectic, rosette-shaped carbide eutectic (based on M7C3), pearlite, martensite, and austenite. Their combinations and area fraction (AF) ratios are reported to be influenced by the alloys’ chemical composition. Spheroidized VC particles are found to be sites for the nucleation of carbide eutectics. Cr and V are shown to substitute each other in the VC and M7C3 carbides, respectively. Chromium alloying leads to the formation of a eutectic (γ-Fe + M7C3), preventing the appearance of proeutectoid cementite in the structure. Vanadium and chromium are revealed to increase the total carbide fraction and the amount of austenite in the matrix. Cr is observed to play a key role in controlling the metallic matrix microstructure.

Keywords

cast irons / carbides / microstructure / vanadium / chromium / austenite / pearlite

Cite this article

Download citation ▾
V. G. Efremenko, K. Shimizu, A. P. Cheiliakh, T. V. Kozarevskaya, K. Kusumoto, K. Yamamoto. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(11): 1096-1108 DOI:10.1007/s12613-014-1014-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tian HH, Addie GR, Visintainer RJ. Erosion-corrosion performance of high-Cr cast iron alloys in flowing liquid-solid slurries. Wear, 2009, 267(11): 2039.

[2]

Ribeiro L, Barbosa A, Viana F, Monteiro Baptista A, Dias C, Ribeiro CA. Abrasion wear behaviour of alloyed and chilled cast irons. Wear, 2011, 270(7–8): 535.

[3]

Zhi XH, Xing JD, Fu HF, Gao YM. Effect of titanium on the as-cast microstructure of hypereutectic high chromium cast iron. Mater. Charact., 2008, 59(9): 1221.

[4]

Correa R, Bedolla-Jacuinde A, Zuno-Silva J, Cardoso E, Mejía I. Effect of boron on the sliding wear of directionally solidified high-chromium white irons. Wear, 2009, 267(1–4): 495.

[5]

Wang YP, Li DY, Parent L, Tian H. Improving the wear resistance of white cast iron using a new concept: high-entropy microstructure. Wear, 2011, 271(9–10): 1623.

[6]

Liu KM, Wang FM, Li CR, Su LY. Influence of vanadium on microstructure and properties of medium-chromium white cast iron. Iron Steel, 2005, 40(Suppl.): 207

[7]

Mohammadnezhad M, Javaheri V, Shamanian M, Naseri M, Bahrami M. Effects of vanadium addition on microstructure, mechanical properties and wear resistance of Ni-Hard4 white cast iron. Mater. Des., 2013, 49, 888.

[8]

Qi XW, Jia ZN, Yang QX, Yang YL. Effects of vanadium additive on structure property and tribological performance of high chromium cast iron hardfacing metal. Surf. Coat. Technol., 2011, 205(23–24): 5510.

[9]

Shigenori N, Satoru Y, Teruo T. Composition and structure of vanadium carbides in high V-Cr-Ni cast iron. J. Jpn. Foundry Eng. Soc., 2002, 74(5): 279

[10]

Kawalec M, Olejnik E. Abrasive wear resistance of cast iron with precipitates of spheroidal VC carbides. Arch. Foundry Eng., 2012, 12(2): 221.

[11]

Wang CC, Hsu HT, Ma Q. Formation of spheroidal carbide in vanadium white cast iron by rare earth modification. Mater. Sci. Technol., 1990, 6(9): 905.

[12]

Shigenori N, Tadashi K, Hideto M. Influence of melting conditions on morphology of vanadium-carbide in stainless spheroidal carbide cast iron. J. Jpn. Foundry Eng. Soc., 2007, 79, 133

[13]

Tokaji K, Horie T, Enomoto Y. Effects of microstructure and carbide spheroidization on fatigue behaviour in high V-Cr-Ni cast irons. Int. J. Fatigue, 2006, 28(3): 281.

[14]

Yoneta N, Shimizu K, Hara H, Tanaka M, Nawa Y. Wear characteristics of spheroidal carbides cast irons in uniaxial rotary glass shredder. Key Eng. Mater., 2011, 457, 249.

[15]

Shimizu K, Naruse T, Xinba Y, Teramachi H, Araya S, Ishida M. High temperature erosion behaviors of high V-Cr-Ni spheroidal carbides cast iron. Key Eng. Mater., 2011, 457, 255.

[16]

Xinba Y, Shimizu K, Matsumoto H, Kitsudo T, Momono T. Erosive wear characteristics of spheroidal carbides cast iron. Wear, 2008, 264(11–12): 947

[17]

Shimizu K, Naruse T, Xinba Y, Kimura K, Minami K, Matsumoto H. Erosive wear properties of high V-Cr-Ni stainless spheroidal carbides cast iron at high temperature. Wear, 2009, 267(1–4): 104.

[18]

Silman GI, Pamfilov EA, Gryadunov SS, Gruvman AI. Effect of the structure of chromium-vanadium white irons on their wear resistance. Met. Sci. Heat Treat., 2007, 49(7–8): 405.

[19]

Efremenko VG, Shimizu K, Noguchi T, Efremenko AV, Chabak YuG. Impact-abrasive-corrosion wear of Fe-based alloys: influence of microstructure and chemical composition upon wear resistance. Wear, 2013, 305(1–2): 155.

[20]

Liu YX, Ma YQ, Wang YH, Zhang ZP, Zhang Y. Changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys. Trans. Mater. Heat Treat., 2004, 25(5): 631

[21]

Bedolla-Jacuinde A, Arias L, Hernández B. Kinetics of secondary carbides precipitation in a high-chromium white iron. J. Mater. Eng. Perform., 2003, 12(4): 371.

[22]

Karantzalis AE, Lekatou A, Mavros H. Microstructural modifications of as-cast high-chromium white iron by heat treatment. J. Mater. Eng. Perform., 2009, 18(2): 174.

[23]

Spanos G, Kral MV. The proeutectoid cementite transformation in steels. Int. Mater. Rev., 2009, 54(1): 19.

[24]

Tang XH, Chung R, Pang CJ, Li DY, Hinckley B, Dolman K. Microstructure of high (45wt%) chromium cast irons and their resistances to wear and corrosion. Wear, 2011, 271(9): 1426.

[25]

Albertin E, Beneduce F, Matsumoto M, Teixeira I. Optimizing heat treatment and wear resistance of high chromium cast irons using computational thermodynamics. Wear, 2011, 271(9–10): 1813.

[26]

Zhou YF, Yang YL, Jiang YW, Yang J, Ren XJ, Yang QX. Fe-24wt%Cr-4.1wt%C hardfacing alloy: Microstructure and carbide refinement mechanisms with ceria additive. Mater. Charact., 2012, 72, 77.

[27]

Albertin E, Sinatora A. Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory ball mill. Wear, 2001, 250(1–12): 492.

[28]

Wang J, Sun ZP, Shen BL, Zuo RL, Li C, Huang SJ. Effects of secondary carbide precipitation and transformation on abrasion resistance of the 16Cr-1Mo-1Cu white iron. J. Mater. Eng. Perform., 2006, 15(3): 316.

[29]

Karantzalis AE, Lekatou A, Diavati E. Effect of destabilization heat treatments on the microstructure of high-chromium cast iron: a microscopy examination approach. J. Mater. Eng. Perform., 2009, 18(8): 1078.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/