Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag

Lu Liu , Mei-long Hu , Chen-guang Bai , Xue-wei Lü , Yu-zhou Xu , Qing-yu Deng

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (11) : 1052 -1061.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (11) : 1052 -1061. DOI: 10.1007/s12613-014-1009-3
Article

Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag

Author information +
History +
PDF

Abstract

The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace (BF) slag was studied using confocal scanning laser microscopy (CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the orthorhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attributed to the deficiency of O2−, when Ti2O3 was involved in the formation of perovskite.

Keywords

blast furnace slag / perovskite / crystallization / cooling rate

Cite this article

Download citation ▾
Lu Liu, Mei-long Hu, Chen-guang Bai, Xue-wei Lü, Yu-zhou Xu, Qing-yu Deng. Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(11): 1052-1061 DOI:10.1007/s12613-014-1009-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lou TP, Li YH, Li LS, Sui ZT. Study on kinetics of perovskite phase precipitate in slag bearing titanium. J. Chin. Ceram. Soc., 2000, 28(3): 255

[2]

Wu YC, Song LY, Li Y, Li Y, Li GH, Zheng ZX. Preparation and photocatalystic activity of Ce-doped TiO2 nanoparticles. J. Synth. Cryst., 2008, 37(2): 427

[3]

Yang H, Xue XX, Zuo L, Yang ZD. Photocatalytic degradation of brilliant red X-3B with blast-furnace slag containing titania and rare earth oxides. J. Chin. Ceram. Soc., 2003, 31(9): 896

[4]

Liu SL, Yang SL, Gao SZ. Technical progress and development trend of extracting titanium from Panzhihua titanium-bearing blast furnace slag. Panzhihua Sci-Tech Inf., 2006, 31(4): 10

[5]

Sun XW, Zhang JT, Yang ZY, You TC, Liu Y. Development of high titaniferous blast-furnace slag brick. New Build. Mater., 2003 5

[6]

Wang P, Han BQ, Han YL, Ke CM, Li N. Research on hydration capability of Panzhihua Iron and Steel CO. BF slag after extracting silicon-titanium alloy. Bull. Chin. Ceram. Soc., 2008, 27(6): 1208

[7]

Xiong Y, Liang B, Li C. Extraction and separation of titanium from air-cooled Ti-bearing blast furnace slag. Chin. J. Process Eng., 2008, 8(6): 1092

[8]

Liu XH, Sui ZT. Leaching of Ti-bearing blast furnace slag by pressuring. Chin. J. Nonferrous Met., 2002, 12(6): 1281

[9]

Li XH, Pu JT. The latest developments of integrated utilization on Panzhihua high titanium-bearing BF slag. Iron Steel Vanadium Titanium, 2011, 32(2): 10

[10]

Guo ZZ, Lou TP, Zhang L, Zhang LN, Sui ZT. Precipitation and growth of perovskite phase in titanium bearing blast furnace slag. Acta Metall. Sin. Engl. Lett., 2007, 20(1): 9.

[11]

Li J, Zhang ZT, Liu LL, Wang WL, Wang XD. Influence of basicity and TiO2 content on the precipitation behavior of the Ti-bearing blast furnace slags. ISIJ Int., 2013, 53(10): 1696.

[12]

Li J, Wang XD, Zhang ZT. Crystallization behavior of rutile in the synthesized Ti-bearing blast furnace slag using single hot thermocouple technique. ISIJ Int., 2011, 51(9): 1396.

[13]

Zhang L, Zhang LN, Wang MY, Li GQ, Sui ZT. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition. Miner. Eng., 2007, 20(7): 684.

[14]

Zhang L, Zhang LN, Wang MY, Li GQ, Sui ZT. Precipitation selectivity of perovskite phase from Ti-bearing blast furnace slag under dynamic oxidation conditions. J. Non Cryst. Solids, 2007, 353(22–23): 2214.

[15]

Li YH, Lou TP, Xia YH, Sui ZT. Kinetics of non-isothermal precipitation process of the perovskite phase in CaO-TiO2-SiO2-Al2O3-MgO system. J. Mater. Sci., 2000, 35(22): 5635.

[16]

Wang MY, Zhang L, Zhang LN, Sui ZT. Characteristics change of Ti-bearing molten blast furnace slag under dynamic oxidation condition. Nonferrous Met., 2008, 60(2): 59

[17]

Hu ML, Liu L, Lv XW, Bai CG, Zhang SF. Crystallization behavior of perovskite in the synthesized high-titanium-bearing blast furnace slag using confocal scanning laser microscope. Metall. Mater. Trans. B, 2014, 45, 76.

[18]

Joo HP, Jin GP, Dong JM, Young EL, Kang YB. In situ observation of the dissolution phenomena of SiC particle in CaO-SiO2-MnO slag. J. Eur. Ceram. Soc., 2010, 30(15): 3181.

[19]

Liu J, Guo M, Jones PT, Verhaeghe F, Blanpain B, Wollants P. In situ observation of the direct and indirect dissolution of MgO particles in CaO-Al2O3-SiO2-based slags. J. Eur. Ceram. Soc., 2007, 27(4): 1961.

[20]

Kurz W, Fisher DJ. Fundamentals of Solidification, 2013, Beijing, Higher Education Press, 116

[21]

S. Dutch, Natural and Applied Sciences [R/OL], University of Wisconsin — Green Bay, http://www.uwgb.edu/dutchs/Petrology/Perovskite%20Structure.HTM, created 22 Sept. 1997, last update 19 Jan. 2012.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/