PDF
Abstract
Specimens of Pb1−1.5xLa x(Zr0.53Ti0.47)1−y−zFe yNb zO3 (x = 0, 0.004, 0.008, 0.012, and 0.016, y = z = 0.01) (PZTFN) ceramics were synthesized by a semi-wet route. In the present study, the effect of La doping was investigated on the structural, microstructural, dielectric, piezoelectric, and ferroelectric properties of the ceramics. The results show that, the tetragonal (space group P4mm) and rhombohedral (space group R3c) phases are observed to coexist in the sample at x = 0.012. Microstructural investigations of all the samples reveal that La doping inhibits grain growth. Doping of La into PZTFN improves the dielectric, ferroelectric, and piezoelectric properties of the ceramics. The hysteresis loops of all specimens exhibit nonlinear behavior. The dielectric, piezoelectric and ferroelectric properties show a maximum response at x ≥ 0.012, which corresponds to the morphotropic phase boundary (MPB).
Keywords
ceramics
/
lanthanum
/
doping
/
dielectric properties
/
piezoelectricity
/
ferroelectricity
/
Rietveld refinement
/
hysteresis loops
Cite this article
Download citation ▾
Arvind Kumar, S. K. Mishra.
Dielectric, piezoelectric, and ferroelectric properties of lanthanum-modified PZTFN ceramics.
International Journal of Minerals, Metallurgy, and Materials, 2014, 21(10): 1019-1027 DOI:10.1007/s12613-014-1003-9
| [1] |
Setter N. Electroceramics: looking ahead. J. Eur. Ceram. Soc., 2001, 21, 1279.
|
| [2] |
Buchanan RC. Ceramic Materials for Electronics: Processing Properties, and Applications, 1986, New York, Marcel Dekker Inc., 139
|
| [3] |
Ragini Ranjan R, Mishra SK, Pandey D. Room temperature structure of Pb(ZrxTi1x)O3 around the morphotropic phase boundary region: a Rietveld study. J. Appl. Phys., 2002, 92(6): 3266.
|
| [4] |
Hiremath BV, Kingon AI, Biggers JV. Reaction sequence in the formation of lead zirconate-lead titanate solid solutions: role of raw materials. J. Am. Ceram. Soc., 1983, 66(11): 790.
|
| [5] |
Dalakoti A, Bandyopadhyay A, Bose S. Effect of Zn, Sr, and Y addition on electrical properties of PZT thin films. J. Am. Ceram. Soc., 2006, 89(3): 1140.
|
| [6] |
Lee BW, Lee EJ. Effects of complex doping on microstructural and electrical properties of PZT ceramics. J. Electroceram., 2006, 17, 597.
|
| [7] |
Prabu M, Banu IBS, Gobalakrishnan S, Chavali M. Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol-gel method. J. Alloys Compd., 2013, 551, 200.
|
| [8] |
Ramam K, Lopez M. Ferroelectric and piezoelectric properties of Ba modified lead zirconium titanate ceramics. J. Phys. D, 2006, 39, 4466.
|
| [9] |
Bochenek D. Properties of the ferroelectric PBZT ceramics admixed with niobium. Ferroelectrics, 2011, 417, 41.
|
| [10] |
Singh A, Chatterjee R. Multiferroic properties of La-Rich BiFeO3-PbTiO3 solid solutions. Ferroelectrics, 2012, 433, 180.
|
| [11] |
Brajesh K, Himanshu AK, Sharma H, Kumari K, Ranjan R, Bandhopadhyay SK, Sinha TP. Structural, dielectric relaxation and piezoelectric characterization of Sr2+ substituted modified PMS-PZT ceramic. Phys B, 2012, 407, 635.
|
| [12] |
Kumar A, Mishra SK. Effects of Sr2+ substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics. Int. J. Miner. Metall. Mater., 2014, 21, 175.
|
| [13] |
Ryu J, Choi JJ, Kim HE. Effect of heating rate on the sintering behavior and the piezoelectric properties of lead zirconate titanate ceramics. J. Am. Ceram. Soc., 2001, 84(4): 902.
|
| [14] |
Dutta S, Choudhary RNP. Synthesis and characterization of Fe3+ modified PLZT ferroelectrics. J. Mater. Sci. Mater. Electron., 2003, 14, 463.
|
| [15] |
Chu SY, Chen TY, Tsai IT, Water W. Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW devices. Sens. Actuators A, 2004, 113, 198.
|
| [16] |
Toplov VY. Heterophase structures and their quantitative characteristics in (1−x)Pb(Fe1/2Nb1/2)O3−xPbTiO3 near the morphotropic phase boundary. Mater. Lett., 2012, 66, 57.
|
| [17] |
Kahoul F, Hamzioui L, Abdessalem N, Boutarfaia A. Synthesis and piezoelectric properties of Pb0.98Sm0.02[(Zry, Ti1−y)0.98(Fe1 2/3+, Nb1 2/5+)0.02]O3 ceramics. Mater. Sci. Appl., 2012, 3, 50
|
| [18] |
Prasatkhetragarn A. Synthesis and dielectric properties of 0.9Pb(Zr1/2Ti1/2)O3-0.1Pb(Fe1/3Nb2/3)O3 ceramics. Ferroelectrics, 2011, 416, 35.
|
| [19] |
Rai R, Sharma S, Choudhary RNP. Dielectric and piezoelectric studies of Fe doped PLZT ceramics. Mater. Lett., 2005, 59, 3921.
|
| [20] |
Shukla AK, Agrawal VK, Das IM, Singh J, Srivastava SL. Dielectric response of PLZT ceramics x/57/43 across ferroelectric-paraelectric phase transition. Bull. Mater. Sci., 2011, 34, 133.
|
| [21] |
Kahoul F, Hamzioui L, Necira Z, Boutarfaia A. Effect of sintering temperature on the electromechanical properties of (1−x)Pb(ZryTi1−y)O3−xSm(Fe0.5 3+, Nb0.5 5+)O3 ceramics. Energy Procedia, 2013, 36, 1050.
|
| [22] |
Singh AP, Mishra SK, Pandey D, Prasad CD, Lal R. Low temperature synthesis of chemically homogeneous lead zirconate titanate (PZT) powder by a semi-wet method. J. Mater. Sci., 1993, 28(18): 5050.
|
| [23] |
Soares MR, Senos AMR, Mantas PQ. Phase coexistence region and dielectric properties of PZT ceramics. J. Eur. Ceram. Soc., 2000, 20, 321.
|
| [24] |
Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B, 1993, 192, 55.
|
| [25] |
S.P. Singh, A.K. Singh, and D. Pandey, Evidence for a monoclinic M A to tetragonal morphotropic phase transition in (1−x)[Pb(Fe1/2Nb1/2)O3]−xPbTiO3 ceramics, J. Phys. Condens. Matter, 19(2007), art. No. 036217.
|
| [26] |
Santos DM, Simoes AZ, Zaghete MA, Santos COP, Varela JA, Longo E. Synthesis and electrical characterization of tungsten doped Pb(Zr0.53Ti0.47)O3 ceramics obtained from a hybrid process. Mater. Chem. Phys., 2007, 103, 371.
|
| [27] |
Krupanidhi SB. Relaxor type perovskites: primary candidates of nano-polar regions. J. Chem. Sci., 2003, 115, 775.
|
| [28] |
B. Noheda, D.E. Cox, G. Shirane, J. Gao, and Z.G. Ye, Phase diagram of the ferroelectric relaxor (1−x)PbMg1/3Nb2/3O3−x-PbTiO3, Phys. Rev. B, 66(2002), art. No. 054104.
|
| [29] |
Kozielski L, Clemens F. Multiferroics application: magnetic controlled piezoelectric transformer. Process. Appl. Ceram., 2012, 6, 15.
|
| [30] |
Sahoo B, Panda PK. Effect of lanthanum, neodymium on piezoelectric, dielectric and ferroelectric properties of PZT. J. Adv. Ceram., 2013, 2, 37.
|
| [31] |
Zak AK, Jalalian A, Hossseini SM, Kompany A, Narm TS. Effect of Y3+ and Nb5+ co-doping on dielectric and piezoelectric properties of PZT ceramics. Mater. Sci., 2010, 28, 703
|
| [32] |
Singh V, Kumar HH, Kharat DK, Haits S, Kulkarni MP. Effect of lanthanum substitution on ferroelectric properties of niobium doped PZT ceramics. Mater. Lett., 2006, 60, 2964.
|
| [33] |
Randall CA, Kim N, Kucera JP, Cao WW, Shrout TR. Intrinsic and extrinsic size effects in fine grained morphotropic phase boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc., 1998, 81, 677.
|
| [34] |
Yao ZH, Liu HX, Li YQ, Cao MH, Hao H. Morphotropic phase boundary of (Bi0.9La0.1)ScO3-PbTiO3 piezoelectric ceramics for high-temperature application. Ferroelectrics, 2010, 409, 21.
|
| [35] |
B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, and L.E. Cross, Stability of the monoclinic phase in the ferroelectric perovskite PbZr1−xTixO3, Phys. Rev. B, 63(2001), art. No. 014103.
|
| [36] |
Takenaka T, Maruyama K, Sakata K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys., 1991, 30, 2236.
|
| [37] |
Jin BM, Lee DS, Kim IW, Kwon JH, Lee KS, Song JS, Jeong SJ. The additives for improving piezoelectric and ferroelectric properties of 0.2Pb(Mg1/3Nb2/3)O3-0.8(PbZrO3-PbTiO3) ceramics. Ceram. Int., 2004, 30, 1449.
|