Non-monotonic influence of a magnetic field on the electrochemical behavior of Fe78Si9B13 glassy alloy in NaOH and NaCl solutions

Hong-di Zhang , Xiao-yu Li , Jing Pang , Li-juan Yin , Hai-jian Ma , Ying-jie Li , Yan Liu , Wei-min Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (10) : 1009 -1018.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (10) : 1009 -1018. DOI: 10.1007/s12613-014-1002-x
Article

Non-monotonic influence of a magnetic field on the electrochemical behavior of Fe78Si9B13 glassy alloy in NaOH and NaCl solutions

Author information +
History +
PDF

Abstract

The corrosion behavior and microstructure of Fe78Si9B13 glassy alloy in NaOH and NaCl solutions under a 0.02-T magnetic field were investigated through electrochemical testing and scanning electron microscopy (SEM). The current-density prepeak (PP) in the anodic polarization curves in low-concentration NaOH solutions (classified as type I) tends to disappear when the NaOH concentration is increased to 0.4 mol/L and the magnetic field is applied. Under the magnetic field, the height of the second current-density peak is increased in low-concentration NaOH solutions (type I) but decreased in high-concentration NaOH solutions (type II). The non-monotonic effect of the magnetic field was similarly observed in the case of polarization curves of samples measured in NaCl solutions. Ring-like corroded patterns and round pits are easily formed under the magnetic field in NaOH and NaCl solutions. These experimental results were discussed in terms of the magnetohydrodynamic (MHD) effect.

Keywords

amorphous alloys / electrochemical behavior / magnetic field / anodic polarization / micrographs

Cite this article

Download citation ▾
Hong-di Zhang, Xiao-yu Li, Jing Pang, Li-juan Yin, Hai-jian Ma, Ying-jie Li, Yan Liu, Wei-min Wang. Non-monotonic influence of a magnetic field on the electrochemical behavior of Fe78Si9B13 glassy alloy in NaOH and NaCl solutions. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(10): 1009-1018 DOI:10.1007/s12613-014-1002-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Inoue A, Zhang T, Masumoto T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM, 1990, 31(3): 177.

[2]

Tenhover M, Johnson WL, Tsuei CC. Upper critical fields of amorphous transition metal based alloys. Solid State Commun., 1981, 38, 53.

[3]

Qin CL, Zhang W, Asami K, Ohtsu N, Inoue A. Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu-Hf-Ti-Nb alloys. Acta Mater., 2005, 53, 3903.

[4]

Geng YX, Wang YM, Qiang JB, Wang Q, Kong FY, Zhang GF, Dong C. Formation and properties of high Fe-content Fe-(B-Si)-Zr bulk amorphous alloys. Int. J. Miner. Metall. Mater., 2013, 20(4): 371.

[5]

Li HX, Wang SL, Jeong Y, Yi S. Corrosion behaviors of thermally grown oxide films on Fe-based bulk metallic glasses. Int. J. Miner. Metall. Mater., 2012, 19(8): 726.

[6]

Yang XG, Eckert K, Mühlenhoff S, Odenbach S. On the decay of the Lorentz-force-driven convection in vertical concentration stratification during magnetoelectrolysis. Electrochim. Acta, 2009, 54, 7056.

[7]

W.J. Lorentz and K.E. Heusler, Anodic Dissolution of Iron Group Metal, F. Mansfeld ed., Marcel Dekker, New York, 1987, p. 1.

[8]

Fahidy TZ. Magnetoelectrolysis. J. Appl. Electrochem., 1983, 13, 553.

[9]

Wang C, Chen SH, Yang XG, Li L. Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography. Electrochem. Commun., 2004, 6, 1009.

[10]

Yang XG, Chen SH, Wang C, Li L. In-line digital holography for the study of dynamic processes of electrochemical reaction. Electrochem. Commun., 2004, 6, 643.

[11]

Yang XG, Chen SH, Li L, Wang C. Digital holographic study of the effect of magnetic field on the potentiostatic current oscillations of iron in sulfuric acid. J. Electroanal. Chem., 2006, 586, 173.

[12]

Li L, Wang C, Chen SH, Yang XG, Yuan BY, Jia HL. An investigation on general corrosion and pitting of iron with the in-line digital holography. Electrochim. Acta, 2008, 53, 3109.

[13]

Yuan BY, Chen SH, Yang XG, Wang C, Li L. Mapping the transient concentration field within the diffusion layer by use of the digital holographic reconstruction. Electrochem. Commun., 2008, 10, 392.

[14]

Koza JA, Mühlenhoff S, Uhlemann M, Eckert K, Gebert A, Schultz L. Desorption of hydrogen from an electrode surface under influence of an external magnetic field: in-situ microscopic observations. Electrochem. Commun., 2009, 11, 425.

[15]

Sueptitz R, Tschulik K, Uhlemann M, Schultz L, Gebert A. Effect of high gradient magnetic fields on the anodic behavior and localized corrosion of iron in sulphuric acid solutions. Corros. Sci., 2011, 53, 3222.

[16]

Sueptitz R, Koza J, Uhlemann M, Gebert A, Schultz L. Magnetic field effect on the anodic behavior of a ferromagnetic electrode in acidic solutions. Electrochim. Acta, 2009, 54, 2229.

[17]

Krause A, Koza J, Ispas A, Uhlemann M, Gebert A, Bund A. Magnetic field induced micro-convective phenomena inside the diffusion layer during the electrodeposition of Co, Ni and Cu. Electrochim. Acta, 2007, 52, 6338.

[18]

Noninski VC. Magnetic field effect on copper electrodeposition in the Tafel potential region. Electrochim. Acta, 1997, 42, 251.

[19]

Lee J, Ragsdale SR, Gao XP, White HS. Magnetic field control of the potential distribution and current at microdisk electrodes. J. Electroanal. Chem., 1997, 422, 169.

[20]

Koza JA, Mühlenhoff S, Żabiński P, Nikrityuk PA, Eckert K, Uhlemann M, Gebert A, Weier T, Schultz L, Odenbach S. Hydrogen evolution under the influence of a magnetic field. Electrochim. Acta, 2011, 56, 2665.

[21]

Koza JA, Uhlemann M, Gebert A, Schultz L. The effect of a magnetic field on the pH value in front of the electrode surface during the electrodeposition of Co, Fe and CoFe alloys. J. Electroanal. Chem., 2008, 617, 194.

[22]

Lu ZP, Huang CB, Huang DL, Yang W. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behavior of iron in weakly alkaline solutions with or without halides. Corros. Sci., 2006, 48, 3049.

[23]

Lu ZP, Huang DL, Yang W, Congleton J. Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid. Corros. Sci., 2003, 45, 2233.

[24]

Gebert A, Haehnel V, Park ES, Kim DH, Schultz L. Corrosion behavior of Mg65Cu7.5Ni7.5Ag5Zn5Gd5Y5 bulk metallic glass in aqueous environments. Electrochim. Acta, 2008, 53, 3403.

[25]

Lu HB, Zhang LC, Gebert A, Schultz L. Pitting corrosion of Cu-Zr metallic glasses in hydrochloric acid solutions. J. Alloys Compd., 2008, 462, 60.

[26]

Lu ZP, Shoji T, Yang W. Anomalous surface morphology of iron generated after anodic dissolution under magnetic fields. Corros. Sci., 2010, 52, 2680.

[27]

M. Keddam, Corrosion Mechanisms in Theory and Practice, Seconded, P. Marcus ed., Marcel DekkerInc, New York, 2002, p. 97.

[28]

Cao CN. Principles of Electrochemistry of Corrosion, 1985, Beijing, Chemical Industry Press, 7

[29]

Bai XD. Corrosion and Control of Materials, 2005, Beijing, Tsinghua University Press, 36

[30]

Lekatou A, Marinou A, Patsalas P, Karakassides MA. Aqueous corrosion behavior of Fe-Ni-B metal glasses. J. Alloys Compd., 2009, 483, 514.

[31]

Baton A, Szewieczek D, Nawrat G. Corrosion of amorphous and nanocrystalline Fe-based alloys and its influence on their magnetic behavior. Electrochim. Acta, 2007, 52, 5690.

[32]

Li GH, Pan SP, Qin JY, Zhang ZH, Wang WM. Insight into thermodynamics and corrosion behavior of Al-Ni-Gd glassy alloys from atomic structure. Corros. Sci., 2013, 66, 360.

[33]

Hiromoto S, Tsai AP, Sumita M, Hanawa T. Effect of chloride ion on the anodic polarization behavior of the Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution. Corros. Sci., 2000, 42(9): 1651.

[34]

Lu ZP, Yang W. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions. Corros. Sci., 2008, 50, 510.

[35]

Yang XG, Eckert K, Odenbach S. Oscillatory Lorentz-force-driven flows during potentiostatic current oscillations in magnetic fields. Electrochem. Commun., 2010, 12, 1576.

[36]

Aaboubi O, Chopart JP, Douglade J, Olivier A, Gabrielli C, Tribollet B. Magnetic field effects on mass transport. J. Electrochem. Soc., 1990, 137, 1796.

[37]

Tacken RA, Janssen LJJ. Applications of magnetoelectrolysis. J. Appl. Electrochem., 1995, 25, 1.

[38]

Saito Y. A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev Polarogr., 1968, 15(6): 177.

[39]

Ragsdale SR, Grant KM, White HS. Electrochemically generated magnetic forces: enhanced transport of a paramagnetic redox species in large, nonuniform magnetic fields. J. Am. Chem. Soc., 1998, 120, 13461.

[40]

Malmsten RA, Smith CP, White HS. Electrochemistry of concentrated organic redox solutions. J. Electroanal. Chem., 1986, 215, 223.

[41]

Paulson SC, Okerlund ND, White HS. Diffusion currents in concentrated redox solutions. Anal. Chem., 1996, 68, 581.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/