Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy

M. Şahin , E. Çadırlı

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (10) : 999 -1008.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (10) : 999 -1008. DOI: 10.1007/s12613-014-1001-y
Article

Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy

Author information +
History +
PDF

Abstract

A Bi-2.0Zn-0.2Al (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate (V = 18.4 μm/s) under different temperature gradients (G = 1.15–3.44 K/mm) and at a constant temperature gradient (G = 2.66 K/mm) under different growth rates (V = 8.3–500 μm/s) in a Bridgman-type directional solidification furnace. The dependence of microstructure parameter (λ) on the solidification parameters (G and V) and that of the microhardness (Hv) on the microstructure and solidification parameters were investigated. The resistivity (ρ) measurements of the studied alloy were performed using the standard four-point-probe method, and the temperature coefficient of resistivity (α) was calculated from the ρ-T curve. The enthalpy (ΔH) and the specific heat (C p) values were determined by differential scanning calorimetry analysis. In addition, the thermal conductivities of samples, obtained using the Wiedemann-Franz and Smith-Palmer equations, were compared with the experimental results. The results revealed that, the thermal conductivity values obtained using the Wiedemann-Franz and Smith-Palmer equations for the Bi-2.0Zn-0.2Al (wt%) alloy are in the range of 5.2–6.5 W/Km and 15.2–16.4 W/Km, respectively.

Keywords

ternary eutectic alloys / directional solidification / microhardness / electrical resistivity / thermal conductivity

Cite this article

Download citation ▾
M. Şahin, E. Çadırlı. Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(10): 999-1008 DOI:10.1007/s12613-014-1001-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gündüz M, Çadırlı E. Directional solidification of aluminium-copper alloys. Mater. Sci. Eng. A, 2002, 327(2): 167.

[2]

Suárez-Peña B, Asensio-Lozano J. Infuence of Sr modification and Ti grain refirement on the morphology of Fe-rich precipitates in eutectic Al-Si die cast alloys. Scripta Mater., 2006, 54(9): 1543.

[3]

Perricone MJ, Dupont JN. Effect of composition on the solidification behavior of several Ni-Cr-Mo and Fe-Ni-Cr-Mo alloys. Metall. Mater. Trans. A, 2006, 37(4): 1267.

[4]

Wu H, Han YF, Chen XC. Study on microstructures and properties of Ti-Si eutectic alloys. Chin. J. Aeronaut., 2003, 16(1): 42.

[5]

Wu MW, Xiong SM. Microstructure characteristics of the eutectics of die cast AM 60B magnesium alloy. J. Mater. Sci. Technol., 2011, 27(12): 1150.

[6]

Barbier D, Huang MX, Bouaziz O. A novel eutectic Fe-15 wt.% Ti alloy with an ultrafine lamellar structure for high temperature applications. Intermetallics, 2013, 35, 41.

[7]

Hassel AW, Rodriguez BB, Milenkovic S, Schneider A. Fabrication of rhenium nanowires by selective etching of eutectic alloys. Electrochim. Acta, 2005, 51(5): 795.

[8]

Farahany S, Ourdjini A, Idris MH. The usage of computer-aided cooling curve thermal analysis to optimise eutectic refiner and modifier in Al-Si alloys. J. Therm. Anal. Calorim., 2012, 109(1): 105.

[9]

Nave MD, Dahle AK, John DH S. The role of zinc in the eutectic solidification of magnesium-aluminium-zinc alloys. TMS Annual Meeting, 2000 243

[10]

Wu YY, Liu XF, Song JG, Bian XF. A novel method to induce the precipitation of primary silicon in commercial near eutectic Al-Si alloys. Mater. Sci. Eng. A, 2007, 457(1–2): 109.

[11]

Hu XW, Li K, Min ZX. Microstructure evolution and mechanical properties of Sn0.7Cu0.7Bi lead-free solders produced by directional solidification. J. Alloys Compd., 2013, 566, 239.

[12]

Contieri RJ, Lopes ESN, de La Cruz MT, Costa AM, Afonso CRM, Caram R. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength. J. Cryst. Growth, 2011, 333(1): 40.

[13]

Garcia LR, Osório WR, Peixoto LC, Garcia A. Mechanical properties of Sn-Zn lead-free solder alloys based on the microstructure array. Mater. Charact., 2010, 61(2): 212.

[14]

Osorio WR, Garcia A. Modeling dendritic structure and mechanical properties of Zn-Al alloys as a function of solidification conditions. Mater. Sci. Eng. A, 2002, 325(1–2): 103.

[15]

Santos GA, de Moura Neto C, Osório WR, Garcia A. Design of mechanical properties of a Zn27Al alloy based on microstructure dendritic array spacing. Mater. Des., 2007, 28(9): 2425.

[16]

Goulart PR, Spinelli JE, Cheung N, Garcia A. The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al-Fe alloys. Mater. Chem. Phys., 2010, 119(1–2): 272.

[17]

Canté MV, Spinelli JE, Cheung N, Garcia A. The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al-Ni alloys. Met. Mater. Int., 2010, 16(1): 39.

[18]

Goulart PR, Spinelli JE, Osório WR, Garcia A. Mechanical properties as a function of microstructure and solidification thermal variables of Al-Si castings. Mater. Sci. Eng. A, 2006, 421(1–2): 245.

[19]

Shen J, Liu YC, Gao HX, Wei C, Yang YQ. Formation of bulk Ag3Sn intermetallic compounds in Sn-Ag lead-free solders in solidification. J. Electron. Mater., 2005, 34(12): 1591.

[20]

Laurila T, Vuorinen V, Kivilahti JK. Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R, 2005, 49(1–2): 1.

[21]

Takaku Y, Ohnuma I, Kainuma R, Yamada Y, Yagi Y, Nishibe Y, Ishide K. Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction. J. Electron. Mater., 2006, 35(11): 1926.

[22]

Lalena JN, Dean NF, Weiser MW. Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment. J. Electron. Mater., 2002, 31(11): 1244.

[23]

Zhou J, Sun YS, Xue F. Properties of low melting point Sn-Zn-Bi solders. J. Alloys Compd., 2005, 397(1–2): 260.

[24]

El-Ashram T, Shalaby RM. Effect of rapid solidification and small additions of Zn and Bi on the structure and properties of Sn-Cu eutectic alloy. J. Electron. Mater., 2005, 34(2): 212.

[25]

Glazer J. Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review. J. Electron. Mater., 1994, 23(8): 693.

[26]

Chen SW, Wu HJ, Huang YC, Gierlotka W. Phase equilibria and solidification of ternary Sn-Bi-Ag alloys. J. Alloys Compd., 2010, 497(1–2): 110.

[27]

Şahin M. The Directional Solidification of Binary and Ternary Metallic Alloys and Investigation the Physical Properties of Them, 2012, Nidge, University of Nigde

[28]

Smiths FM. Measurement of sheet resistivities with the four-point probe. Bell Syst. Tech. J., 1958, 37(3): 711.

[29]

Kittel C. Introduction to Solid State Physics, 1965, New York, John Wiley & Sons, 178

[30]

Poirier DR, Geiger GH. Transport Phenomena in Materials Processing, 1994, Warrendale, PA, Minerals, Metals and Materials Society, 196

[31]

Kumar GS, Prasad G, Pohl RO. Experimental determinations of the Lorenz number. J. Mater. Sci., 1993, 28(16): 4261.

[32]

Wannaparhun S. Roles of Supercooling and Cooling Rates in the Microstructural Evolution of Copper-cobalt Alloys, 2005, Gainesville, University of Florida

[33]

Jackson KA, Hunt JD. Lamellar and eutectic growth. Trans. Metall. Soc., 1966, 236, 1129

[34]

Yan YC, Ding HS, Kang YW, Song JX. Microstructure evolution and mechanical properties of Nb-Si based alloy processed by electromagnetic cold crucible directional solidification. Mater. Des., 2014, 55, 450.

[35]

Böyük U, Maraşlı N, Çadırlı E, Kaya H, Keşlioğlu K. Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al-Cu-Ag eutectic alloy. Curr. Appl. Phys., 2012, 12(1): 7.

[36]

Fan JL, Li XZ, Su YQ, Chen RR, Gou JJ, Fu HZ. Dependency of microstructure parameters and microhardness on the temperature gradient for directionally solidified Ti-49Al alloy. Mater. Chem. Phys., 2011, 130(3): 1232.

[37]

Çadırlı E, Böyük U, Kaya H, Maraşlı N. Determination of mechanical, electrical and thermal properties of the Sn-Bi-Zn ternary alloy. J. Non Cryst. Solids, 2011, 357(15): 2876.

[38]

Hu XW, Li K, Ai FR. Research on lamellar structure and micro-hardness of directionally solidified Sn-58Bi eutectic alloy. China Foundry, 2012, 9(4): 360

[39]

Guo JT, Xu CM, Du XH, Fu HZ. The effect of solidification rate on microstructure and mechanical properties of an eutectic NiAl-Cr(Mo)-Hf alloy. Mater. Lett., 2004, 58(26): 3233.

[40]

Vnuk F, Sahoo M, Baragar D, Smith RW. Mechanical properties of Sn-Zn eutectic alloys. J. Mater. Sci., 1980, 15(10): 2573.

[41]

Lapin J, Mareček J. Effect of growth rate on microstructure and mechanical properties of directionally solidified multiphase intermetallic Ni-Al-Cr-Ta-Mo-Zr alloy. Intermetallics, 2006, 14(10–11): 1339.

[42]

Böyük U, Maraşlı N. The microstructure parameters and microhardness of directionally solidified Sn-Ag-Cu eutectic alloy. J. Alloys Compd., 2009, 485(1): 264.

[43]

Hu XW, Chen WJ, Wu B. Microstructure and tensile properties of Sn-1Cu lead-free solder alloy produced by directional solidification. Mater. Sci. Eng. A, 2012, 556, 816.

[44]

Lapin J, Ondrúš L, Nazmy M. Directional solidification of intermetallic Ti-46Al-2W-0.5Si alloy in alumina moulds. Intermetallics, 2002, 10(10): 1019.

[45]

Fan JL, Li XZ, Su YQ, Guo JJ, Fu HZ. Dependency of microhardness on solidification processing parameters and microstructure characteristics in the directionally solidified Ti-46Al-0.5W-0.5Si alloy. J. Alloys Compd., 2010, 504(1): 60.

[46]

Engin S, Böyük U, Kaya H, Maraşlı N. Directional solidification and physical properties measurements of the zinc-aluminium eutectic alloy. Int. J. Miner. Metall. Mater., 2011, 18(6): 659.

[47]

Hu XW, Li SM, Gao SF, Liu L, Fu HZ. Research on lamellar structure and microhardness in directionally solidified ternary Sn-40.5Pb-2.5Sb eutectic alloy. J. Alloys Compd., 2010, 493(1–2): 116.

[48]

Ho CY, Powell RW, Liley PE. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data, 1972, 1(2): 279.

[49]

Aksöz S, Ocak Y, Maraşlı N, Keşlioğlu K. Thermal conductivity and interfacial energy of solid Bi solution in the Bi-Al-Zn eutectic system. Fluid Phase Equilib., 2010, 293(1): 32.

[50]

Aksöz S, Maraşlı N, Keşlioğlu K, Yıldız F. Variations of thermal conductivity with temperature and composition of Zn in the Bi-[x] at.% Zn-2 at.% Al alloys. Thermochim. Acta, 2012, 547, 1.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/