Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications

T. Sampath Kumar , S. Balasivanandha Prabu , Geetha Manivasagam , K. A. Padmanabhan

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (8) : 796 -805.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (8) : 796 -805. DOI: 10.1007/s12613-014-0973-y
Article

Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications

Author information +
History +
PDF

Abstract

Monolayer and bilayer coatings of TiAlN, AlCrN, and AlCrN/TiAlN were deposited onto tungsten carbide inserts using the plasma enhanced physical vapor deposition process. The microstructures of the coatings were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM micrographs revealed that the AlCrN and AlCrN/TiAlN coatings were uniform and highly dense and contained only a limited number of microvoids. The TiAlN coating was non-uniform and highly porous and contained more micro droplets. The hardness and scratch resistance of the specimens were measured using a nanoindentation tester and scratch tester, respectively. Different phases formed in the coatings were analyzed by X-ray diffraction (XRD). The AlCrN/TiAlN coating exhibited a higher hardness (32.75 GPa), a higher Young’s modulus (561.97 GPa), and superior scratch resistance (L CN = 46 N) compared to conventional coatings such as TiAlN, AlCrN, and TiN.

Keywords

cutting tools / coatings / physical vapor deposition / characterization / nanoindentation

Cite this article

Download citation ▾
T. Sampath Kumar, S. Balasivanandha Prabu, Geetha Manivasagam, K. A. Padmanabhan. Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(8): 796-805 DOI:10.1007/s12613-014-0973-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Soković M. Quality management in development of hard coatings on cutting tools. J. Achiev. Mater. Manuf. Eng., 2007, 24(1): 421

[2]

Dobrzański LA, Lukaszkowicz K, Labisz K. Structure, texture and chemical composition of coatings deposited by PVD techniques. Arch. Mater. Sci. Eng., 2009, 37(1): 45

[3]

Chokwatvikul C, Larpkiattaworn S, Surinphong S, Busabok C, Termsuksawad P. Effect of nitrogen partial pressure on characteristic and mechanical properties of hard coating TiAlN film. J. Met., Mater. Miner., 2011, 21(1): 115

[4]

Dobrzański LA, Staszuk M, Golombek K, Pancielejko M. Properties of Ti(B,N) coatings deposited onto cemented carbides and sialon tool ceramics. J. Achiev. Mater. Manuf. Eng., 2010, 41(1–2): 66

[5]

A. Knutsson, M.P. Johansson, L. Karlsson, and M. Odén, Thermally enhanced mechanical properties of arc evaporated Ti0.34Al0.66N/TiN multilayer coatings, J. Appl. Phys., 108(2010), art. No. 044312.

[6]

Korotaev AD, Borisov DP, Moshkov VYu, Ovchinnikov SV, Oskomov KV, Pinzhin YuP, Savostikov VM, Tymentsev AN. Nanocomposite and nanostructured superhard Ti-Si-B-N coatings. Russ. Phys. J., 2007, 50(10): 969.

[7]

Chawla V, Chawla A, Mehta Y, Puri D, Prakash S, Sidhu BS. Investigation of properties and corrosion behavior of hard TiAlN and AlCrN PVD thin coatings in the 3 wt% NaCl solution. J. Aust. Ceram. Soc., 2011, 47(1): 48

[8]

Veprek S, Mukherjee S, Männling HD, He JL. On the reliability of the measurements of mechanical properties of superhard coatings. Mater. Sci. Eng. A, 2003, 340, 292.

[9]

Cabrera G, Torres F, Caicedo JC, Aperador W, Amaya C, Prieto P. Improvement of electrochemical surface properties in steel substrates using a nanostructured CrN/AlN multilayer coating. J. Mater. Eng. Perform., 2012, 21, 128.

[10]

Chang YY, Wang DY, Hung CY. Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process. Surf. Coat. Technol., 2005, 200, 1702.

[11]

Zhang S, Sun D, Fu YQ, Du HJ. Recent advances of superhard nanocomposite coatings: a review. Surf. Coat. Technol., 2003, 167, 113.

[12]

Fox-Rabinovich GS, Yamamoto K, Aguirre MH, Cahill DG, Veldhuis SC, Biksa A, Dosbaeva G, Shuster LS. Multi-functional nano-multilayered AlTiN/Cu PVD coating for machining of Inconel 718 superalloy. Surf. Coat. Technol., 2010, 204, 2465.

[13]

Polok-Rubiniec M, Dobrzański LA, Lukaszhowicz K, Adamiak M. Comparison of the structure, properties and wear resistance of the TiN PVD coatings. J. Achiev. Mater. Manuf. Eng., 2008, 27(1): 87

[14]

Polok-Rubiniec M, Lukaszhowicz K, Dobrzański LA, Adamiak M. Comparison of the PVD coatings deposited onto hot work tool steel and brass substrates. J. Achiev. Mater. Manuf. Eng., 2007, 24(2): 195

[15]

Rebolé R, Martínez A, Rodriguez R, Fuentes GG, Spain E, Watson N, Avelar-Batista JC, Housden J, Montalá F, Carreras LJ, Tate TJ. Microstructural and tribological investigations of CrN coated, wet-stripped and recoated functional substrates used for cutting and forming tools. Thin Solid Films, 2004, 469–470, 466.

[16]

Polok-Rubiniec M, Dobrzański LA, Adamiak M. Comparison of the PVD coatings. Arch. Mater. Sci. Eng., 2009, 38(2): 118

[17]

Dobrzański LA, Żukowska LW. Properties of the multicomponent and gradient PVD coatings. Arch. Mater. Sci. Eng., 2007, 28(10): 621

[18]

Barshilia HC, Deepthi B, Selvakumar N, Jain A, Rajam KS. Nanolayered multilayer coatings of CrN/CrAlN prepared by reactive DC magnetron sputtering. Appl. Surf. Sci., 2007, 253, 5076.

[19]

Soldán J, Neidhardt J, Sartory B, Kaindl R, Čerstvý R, Mayrhofer PH, Tessadri R, Polcik P, Lechthaler M, Mitterer C. Structure-property relations of arc-evaporated Al-Cr-Si-N coatings. Surf. Coat. Technol., 2008, 202, 3555.

[20]

Fischer-Cripps AC. Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol., 2006, 200, 4153.

[21]

Musil J, Kunc F, Zeman H, Poláková H. Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf. Coat. Technol., 2002, 154, 304.

[22]

Sivitski A, Gregor A, Saarna M, Kulu P, Sergejev F. Application of the indentation method for cracking resistance evaluation of hard coatings on tool steels. Est. J. Eng., 2009, 15(4): 309.

[23]

Oraby SE, Alaskari AM. Atomic force microscopy (AFM) topographical surface characterization of multilayer-coated and uncoated carbide inserts. World Acad. Sci., 2010, 4, 396

[24]

Alaskari MA, Oraby SE, Almazrouee AI. SEM and AFM investigations of surface defects and tool wear of multilayers coated carbide inserts. World Acad. Sci. Eng. Technol., 2011, 5, 530

[25]

Barshilia HC, Deepthi B, Rajam KS, Bhatti KP, Chaudhary S. Growth and characterization of TiAlN/CrAlN superlattices prepared by reactive direct current magnetron sputtering. J. Vac. Sci. Technol. A, 2009, 27, 29.

[26]

Zinin PV, Solozhenko VL, Malkin AJ, Ming LC. Atomic force microscopy studies of cubic BC2N, a new superhard phase. J. Mater. Sci., 2005, 40, 3009.

[27]

Warcholinski B, Gilewicz A. Tribological properties of CrNx coatings. J. Achiev. Mater. Manuf. Eng., 2009, 37(2): 498

[28]

Hagarová M, Štěpánek I, Jakubéczyová D. Evaluation of thin PVD coatings by adhesive-cohesive test. Acta Metall. Slovaca, 2010, 16(3): 157

[29]

Pawlak W, Wendler B. Multilayer, hybrid PVD coatings on Ti6Al4V titanium alloy. J. Achiev. Mater. Manuf. Eng., 2009, 37(2): 660

[30]

Pang XL, Gao KW, Luo F, Emirov Y, Levin AA, Volinsky AA. Investigation of microstructure and mechanical properties of multi-layer Cr/Cr2O3 coatings. Thin Solid Films, 2009, 517, 1922.

[31]

Dobrzański LA, Skrzypek S, Pakula D, Mikula J, Křiž A. Influence of the PVD and CVD technologies on the residual macro stresses and functional properties of the coated tool ceramics. J. Achiev. Mater. Manuf. Eng., 2009, 35(2): 162

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/