Effects of pre-strain and baking parameters on the microstructure and bake-hardening behavior of dual-phase steel
Chun-fu Kuang , Shen-gen Zhang , Jun Li , Jian Wang , Hua-fei Liu
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (8) : 766 -771.
Effects of pre-strain and baking parameters on the microstructure and bake-hardening behavior of dual-phase steel
In a typical process, C-Mn steel was annealed at 800°C for 180 s, and then cooled rapidly to obtain the ferrite-martensite microstructure. After pre-straining, the specimens were baked and the corresponding bake-hardening (BH) values were determined as a function of pre-strain, baking temperature, and baking time. The influences of pre-strain, baking temperature and baking time on the microstructure evolution and bake-hardening behavior of the dual-phase steel were investigated systematically. It was found that the BH value apparently increased with an increase in pre-strain in the range from 0 to 1%; however, increasing pre-strain from 1% to 8% led to a decrease in the BH value. Furthermore, an increase in baking temperature favored a gradual improvement in the BH value because of the formation of Cottrell atmosphere and the precipitation of carbides in both the ferrite and martensite phases. The BH value reached a maximum of 110 MPa at a baking temperature of 300°C. Moreover, the BH value enhanced significantly with increasing baking time from 10 to 100 min.
dual-phase steel / pre-strain / baking treatment / microstructure / hardening
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
/
| 〈 |
|
〉 |