Thermoelectric properties of Al substituted misfit cobaltite Ca3(Co1−xAl x)4O9 at low temperature

Yi Liu , Hong-mei Chen , Jin-lian Hu , Xu-bing Tang , Hai-jin Li , Wei Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (7) : 720 -725.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (7) : 720 -725. DOI: 10.1007/s12613-014-0963-0
Article

Thermoelectric properties of Al substituted misfit cobaltite Ca3(Co1−xAl x)4O9 at low temperature

Author information +
History +
PDF

Abstract

Thermoelectric properties of Al substituted compounds Ca3(Co1−xAl x)4O9 (x = 0, 0.03, 0.05), prepared by a sol-gel process, have been investigated in the temperature range 305–20 K. The results indicate that after Al substitution for Co in Ca3(Co1−xAl x)4O9, the direct current electrical resistivity and thermopower increase due to the reduction of carrier concentration. Experiments show that Al substitution results in decreased lattice thermal conductivity. The figure of merit of temperature behavior suggests that Ca3(Co0.97Al0.03)4O9 would be a promising candidate thermoelectric material for high-temperature thermoelectric application.

Keywords

transition metal oxides / sol-gel process / thermoelectricity / electrical properties / substitution

Cite this article

Download citation ▾
Yi Liu, Hong-mei Chen, Jin-lian Hu, Xu-bing Tang, Hai-jin Li, Wei Wang. Thermoelectric properties of Al substituted misfit cobaltite Ca3(Co1−xAl x)4O9 at low temperature. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(7): 720-725 DOI:10.1007/s12613-014-0963-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu HQ, Zhang SN, Zhu TJ, zhao XB, Gu YJ, Cui HZ. Enhanced thermoelectric properties of Co1−xyNix+ySb3−xSnx materials. Int. J. Miner. Metall. Mater., 2012, 19(3): 240.

[2]

Zhang SN, Jiang GY, Zhu TJ, zhao XB, Yang SH. Doping effect on thermoelectric properties of nonstoichiometric AgSbTe2 compounds. Int. J. Miner. Metall. Mater., 2011, 18, 352.

[3]

Biswas K, He JQ, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489, 414.

[4]

Li S, Funahashi R, Matsubara I, Ueno K, Yamada H. High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem., 1999, 9, 1659.

[5]

Li SW, Funahashi R, Matsubara I, Ueno K, Sodeoka S, Yamada H. Synthesis and thermoelectric properties of the new oxide materials Ca3−xBixCo4O9+δ (0.0 < x < 0.75). Chem. Mater., 2000, 12, 2424.

[6]

Liu Y, Li HJ, Chen HM, Ji YX. The effect of Fe substitution on electrical and thermal conductivity and thermopower of Ca3(FexCo1−x)4O9 at low temperatures. J. Phys. Chem. Solids, 2014, 75, 606.

[7]

Moon JW, Masuda Y, Seo WS, Koumoto K. Influence of ionic size of rare-earth site on the thermoelectric properties of RCoO3-type perovskite cobalt oxides. Mater. Sci. Eng. B, 2001, 85(1): 70.

[8]

Moon JW, Masuda Y, Seo WS, Koumoto K. Ca-doped HoCoO3 as p-type oxide thermoelectric material. Mater. Lett., 2001, 48(3–4): 225.

[9]

Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B, 1997, 56, R12685.

[10]

Terasaki I, Ishii Y, Tanaka D, Takahata K, Iguchi Y. Thermoelectric properties of NaCo2−xCuxO4 improved by the substitution of Cu for Co. Jpn. J. Appl. Phys., 2001, 40, L65.

[11]

Liu Y, Qin XY. Temperature dependence of electrical resistivity for Ca-doped perovskite-type Y1−xCaxCoO3 prepared by sol-gel process. J. Phys. Chem. Solids, 2006, 67(8): 1893.

[12]

Y. Liu, X.Y. Qin, Y.F. Wang, H.X. Xin, J. Zhang, and H.J. Li, Electrical transport and thermoelectric properties of Y1−xCaxCoO3 (0 ≤ x ≤ 0.1) at high temperatures, J. Appl. Phys., 101(2007), art. No. 083709.

[13]

Liu Y, Li HJ, Zhang Q, Liu HT. Fabrication and thermoelectric properties of perovskite-type thermoelectric oxide Y0.95R0.05CoO3 (R = Ca, Sr, Ba). Chin. J. Mater. Res., 2012, 26(1): 31

[14]

Acta Phys. Sin., 2013, 62(4)

[15]

Liu Y, Li HJ, Li Y, Sun WB. Effect of Sr substitution on electrical transport and thermoelectric properties of Y1−xSrxCoO3 (0 ≤ x ≤ 0.2) prepared by sol-gel process. Ceram. Int., 2013, 39, 8189.

[16]

Y. Liu, H.J. Li, Q. Zhang, Y. Li, and H.T. Liu, Electrical transport and thermoelectric properties of Ni doped perovskite-type YCo1−xNixO3 (0 ≤ x ≤ 0.07) prepared by sol-gel process, Chin. Phys. B, 22(2013), art. No. 057201.

[17]

Yasukawa M, Murayama N. High-temperature thermoelectric properties of the oxide material: Ba1−xSrxPbO3 (x = 0–0.6). J. Mater. Sci. Lett., 1997, 16(21): 1731.

[18]

Tsubota T, Ohtaki M, Eguchi K, Arai H. Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem., 1997, 7, 85.

[19]

Ohta H, Seo WS, Koumoto K. Thermoelectric properties of homologous compounds in the ZnO-In2O3 system. J. Am. Ceram. Soc., 1996, 79(8): 2193.

[20]

Kazeoka M, Hiramatsu H, Seo WS, Koumoto K. Improvement in thermoelectric properties of (ZnO)5In2O3 through partial substitution of yttrium for indium. J. Mater. Res., 1998, 13(3): 523.

[21]

Masuda Y, Ohta M, Seo WS, Pitschke W, Koumoto K. Structure and thermoelectric transport properties of isoelectronically substituted (ZnO)5In2O3. J. Solid State Chem., 2000, 150(2): 221.

[22]

Tani T, Isobe S, Seo WS, Koumoto K. Themoelectric properties of highly textured (ZnO)5In2O3 ceramics. J. Mater. Chem., 2001, 11, 2324.

[23]

Isobe S, Tani T, Masuda Y, Seo WS, Koumoto K. Thermoelectric performance of yttrium-substituted (ZnO)5In2O3 inproved through ceramic texturing. Jpn. J. Appl. Phys., 2002, 41, 731.

[24]

Iwasaki K, Shimada M, Yamane H, Takahashi J, Kubota S, Nagasaki T, Arta Y, Yuhara J, Nishi Y, Matsui T. Electrical resistivity and Seebeck coefficient of Sr6Co5O15. J. Alloys Compd., 2004, 377(1–2): 272.

[25]

Ohtani T, Kuroda K, Matsugami K, Katoh D. Electrical resistivity and thermopower of (La1−xSrx)MnO3 and (La1−xSrx)CoO3 at elevated temperatures. J. Eur. Ceram. Soc., 2000, 20, 2721.

[26]

Weber WJ, Griffin CW, Bates JL. Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc., 1987, 70(4): 265.

[27]

Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H. Electrical transport properties and high-temmperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J. Solid State Chem., 1995, 120(1): 105.

[28]

Moon JW, Seo WS, Okabe H, Okawa T, Koumoto K. Ca-doped RCoO3 (R = Gd, Sm, Nd, Pr) as thermoelectric materials. J. Mater. Chem., 2000, 10, 2007.

[29]

Iijima M, Murayama N. High temperature thermoelectric properties of La1−xSrxFeO3 (0 < x < 1). Proceedings of 17th International Conference on Thermoelectrics, 1998 598

[30]

Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B, 2000, 62, 166.

[31]

Matsubara I, Funahashi R, Takeuchi T, Sodeoka S. Thermoelectric properties of spark plasma sintered Ca2.75Gd0.25Co4O9 ceramics. J. Appl. Phys., 2001, 90, 462.

[32]

Xu GJ, Funahashi R, Shikano M, Matsubara I, Zhou YQ. Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system. Appl. Phys. Lett., 2002, 80(20): 3760.

[33]

Wang DL, Chen LD, Yao Q, Li JG. High-temperature thermoelectric properties of Ca3Co4O9+δ with Eu substitution. Solid State Commun., 2004, 129(9): 615.

[34]

Nan J, Wu J, Deng Y, Nan CW. Thermoelectric properties of La-doped Ca-Co-O misfit cobalties. Solid State Commun., 2002, 124(7): 243.

[35]

Xu GJ, Funahashi R, Shikano M, Pu QR, Liu B. High temperature transport properties of Ca3−xNaxCo4O9 system. Solid State Commun., 2002, 124(3): 73.

[36]

Li SW, Funahashi R, Matsubara I, Yamada H, Ueno K, Sodeoka S. Synthesis and thermoelectric properties of the new oxide ceramics Ca3−xSrxCo4O9+δ (x = 0.0–1.0). Ceram. Int., 2001, 27, 321.

[37]

Maignan A, Hebert S, Pelloquin D, Michel C, Hejtmanek J. Thermopower enhancement in misfit cobaltites. J. Appl. Phys., 2002, 92(4): 1964.

[38]

Li D, Qin XY, Gu YJ, Zhang J. The effect of Mn substitution on thermoelectric properties of Ca3MnxCo4−xO9 at low temperatures. Solid State Commun., 2005, 134, 235.

[39]

Miyazaki Y, Kudo K, Akoshima M, Ono Y, Koike Y, Kajitani T. Low-temperature thermoelectric properties of the composite crystal [Ca2CoO3.34]0.614[CoO2]. Jpn. J. Appl. Phys., 2000, 39, L531.

[40]

Terasaki I. Anomalous Co-site substitution effects on the physical properties of the thermoelectric oxide NaCo2O4. Proceedings of 19th International Conference on Thermoelectrics, 2000 20

[41]

Koshibae W, Tsutsui K, Maekawa S. Thermopower in cobalt oxides. Phys. Rev. B, 2000, 62, 6869.

[42]

Fisher B, Patlagan L, Reisner GM, Knizhnik A. Systematics in the thermopower of electron-doped layered manganites. Phys. Rev. B, 2000, 61(1): 470.

[43]

Takahata K, Iguchi Y, Tanaka D, Itoh T, Terasaki I. Low thermal conductivity of the layered oxide (Na, Ca)Co2O4: Another example of a phonon glass and an electron crystal. Phys. Rev. B, 2000, 61(19): 12551.

AI Summary AI Mindmap
PDF

218

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/