Thermodynamic analysis of the compositional control of inclusions in cutting-wire steel
Jing Zhang , Fu-ming Wang , Chang-rong Li
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (7) : 647 -653.
Thermodynamic analysis of the compositional control of inclusions in cutting-wire steel
Data from a thermodynamic database and the calculation software FactSage were used to investigate the phase diagrams of the MnO-CaO-SiO2-Al2O3 system in cutting-wire steel and the effects of oxide components on the low-melting-point (LMP) zone in the corresponding phase diagrams. Furthermore, the activities of oxide components in the quaternary system at an Al2O3 content of 25wt% were calculated. The contents of dissolved [Al] and [O] in liquid steel in equilibrium with LMP inclusions in the MnO-CaO-SiO2-Al2O3 system were optimized. The results show that the MnO-CaO-SiO2-Al2O3 system possesses the largest LMP zone (below 1400°C) at an Al2O3 content of 25wt% and that the CaO content should be simultaneously controlled in the range of 40wt% to 45wt%. The activities of the oxide components CaO, MnO, and SiO2 should be restricted in the ranges of 0 to 0.05, 0.01 to 0.6, and 0.001 to 0.8, respectively. To obtain LMP inclusions, the [Al] and [O] contents in cutting-wire steel must be controlled within the ranges of 0.5 × 10−6 to 1.0 × 10−5 and 3.0 × 10−6 to 5.0 × 10−5, respectively.
wire steel / cutting / inclusions / thermodynamic calculations / activity / oxides
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
/
| 〈 |
|
〉 |