Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash

Ze Liu , Ning-ning Shao , Tian-yong Huang , Jun-feng Qin , Dong-min Wang , Yu Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (6) : 620 -626.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (6) : 620 -626. DOI: 10.1007/s12613-014-0950-5
Article

Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash

Author information +
History +
PDF

Abstract

Geopolymers are three-dimensional aluminosilicates formed in a short time at low temperature by geopolymerization. In this paper, alkali-activated foam geopolymers were fabricated from circulating fluidized bed fly ash (CFA), and the effect of SiO2/Na2O mole ratio (0.91–1.68) on their properties was studied. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The results show that SiO2/Na2O mole ratio plays an important role in the mechanical and morphological characteristics of geopolymers. Foam samples prepared in 28 d with a SiO2/Na2O mole ratio of 1.42 exhibit the greatest compressive strength of 2.52 MPa. Morphological analysis reveals that these foam geopolymers appear the relatively optimized pore structure and distribution, which are beneficial to the structure stability. Moreover, a combination of the Si/Al atomic ratio ranging between 1.47 and 1.94 with the Na/Al atomic ratio of about 1 produces the samples with high strength.

Keywords

foamed products / geopolymers / fly ash / strength of materials / morphology / silicon oxide / sodium oxide

Cite this article

Download citation ▾
Ze Liu, Ning-ning Shao, Tian-yong Huang, Jun-feng Qin, Dong-min Wang, Yu Yang. Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(6): 620-626 DOI:10.1007/s12613-014-0950-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Phair JW, Smith JD, Van Deventer JSJ. Characteristics of aluminosilicate hydrogels related to commercial “Geopolymers”. Mater. Lett., 2003, 57(28): 4356.

[2]

Sun P. Fly Ash Based Inorganic Polymeric Building Material, 2005, Detroit, Wayne State University, 216

[3]

Lyon RE, Balaguru PN, Foden A, Sorathia U, Davidovits J, Davidovits M. Fire-resistant aluminosilicate composites. Fire Mater., 1997, 21, 67.

[4]

Davidovits J. Geopolymer Chemistry and Applications, 2011, Saint-Quentin, Institut Géopolymère, 469

[5]

Xu H. Geopolymerisation of Alumino-Silicate Minerals, 2002, Melbourne, University of Melbourne, 297

[6]

Komnitsas K, Zaharaki D. Geopolymerisation: a review and prospects for the minerals industry. Miner. Eng., 2007, 20(14): 1261.

[7]

Kong DLY, Sanjayan JG, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res., 2007, 37(12): 1583.

[8]

Xu H, Van Deventer JSJ. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process., 2000, 59(3): 247.

[9]

Xu H, Van Deventer JSJ. Geopolymerisation of multiple minerals. Miner. Eng., 2002, 15(12): 1131.

[10]

Xu H, Van Deventer JSJ. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids Surf. A, 2003, 216(1–3): 27.

[11]

Duxson P, Lukey GC, Van Deventer JSJ. Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity. Ind. Eng. Chem. Res., 2006, 45(23): 7781.

[12]

Rahier H, Simons W, Van Mele B, Biesemans M. Low-temperature synthesized aluminosilicate glasses: Part III. Influence of the composition of the silicate solution on production, structure and properties. J. Mater. Sci., 1997, 32(6): 2237.

[13]

Rahier H, Wastiels J, Biesemans M, Willlem R, Van Assche G, Van Mele B. Reaction mechanism, kinetics and high temperature transformations of geopolymers. J. Mater. Sci., 2007, 42(9): 2982.

[14]

Lee WK. Solid-gel Interactions in Geopolymers, 2002, Melbourne, University of Melbourne, 179

[15]

Swaddle TW. Silicate complexes of aluminum(III) in aqueous systems. Coord. Chem. Rev., 2001, 219–221, 665.

[16]

Provis JL, Van Deventer JSJ. Geopolymerisation kinetics: 1. In situ energy-dispersive X-ray diffractometry. Chem. Eng. Sci., 2007, 62(9): 2309.

[17]

Provis JL, Van Deventer JSJ. Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry. J. Mater. Sci., 2007, 42(9): 2974.

[18]

Panagiotopoulou C, Kontori E, Perraki Th, Kakali G. Dissolution of aluminosilicate minerals and by-products in alkaline media. J. Mater. Sci., 2007, 42(9): 2967.

[19]

Liu Z, Shao NN, Wang DM, Qin JF, Huang TY, Song W, Lin MX, Yuan JS, Wang Z. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash. Int. J. Miner. Metall. Mater., 2014, 21(1): 89.

[20]

Fernández-Jiménez A, Palomo A. Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel, 2003, 82(18): 2259.

[21]

Jaarsveld JGSV. The Physical and Chemical Characteristics of Fly Ash Based Geopolymers, 2000, Melbourne, University of Melbourne, 1

[22]

Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Van Deventer JSJ. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A, 2005, 269(1–3): 47.

[23]

Stevenson M, Sagoe-Crentsil K. Relationships between composition, structure and strength of inorganic polymers: Part 1. Metakaolin-derived inorganic polymers. J. Mater. Sci., 2005, 40, 2023.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/