Characterization of low-purity clays for geopolymer binder formulation

Nasser Y. Mostafa , Q. Mohsen , A. El-maghraby

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (6) : 609 -619.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (6) : 609 -619. DOI: 10.1007/s12613-014-0949-y
Article

Characterization of low-purity clays for geopolymer binder formulation

Author information +
History +
PDF

Abstract

The production of geopolymer binders from low-purity clays was investigated. Three low-purity clays were calcined at 750°C for 4 h. The calcined clays were chemically activated by the alkaline solutions of NaOH and Na2SiO3. The compressive strength was measured as a function of curing time at room temperature and 85°C. The results were compared with those of a pure kaolin sample. An amorphous aluminosilicate polymer was formed in all binders at both processing temperatures. The results show that, the mechanical properties depend on the type and amount of active aluminum silicates in the starting clay material, the impurities, and the processing temperature.

Keywords

geopolymers / microstructure / X-ray diffraction / compressive strength / clay

Cite this article

Download citation ▾
Nasser Y. Mostafa, Q. Mohsen, A. El-maghraby. Characterization of low-purity clays for geopolymer binder formulation. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(6): 609-619 DOI:10.1007/s12613-014-0949-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davidovits J, Comrie DC, Paterson JH, Ritcey DJ. Geopolymeric concretes for environmental protection. Concr. Int., 1990, 12, 30

[2]

Provis JL, Lukey GC, Van Deventer JSJ. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem. Mater., 2005, 17(12): 3075.

[3]

Slavik R, Bednarik V, Vondruska M, Skoba O, Hanzlicek T. Chemical indicator of geopolymer. Proceedings of 2005 Geopolymer Conference, 2005 17

[4]

Palomo A, Grutzec MW, Blanco MT. Alkali-activated fly ashes: a cement for the future. Cem. Concr. Res., 1999, 29(8): 1323.

[5]

Davidovits J. Geopolymer chemistry and sustainable Development. The Poly(sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry. Proceedings of 2005 Geopolymer Conference, 2005 9

[6]

Phair JW, Van Deventer JSJ. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Miner. Eng., 2001, 14(3): 289.

[7]

Xu H, Van Deventer JSJ. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process., 2000, 59(3): 247.

[8]

Silva P D, Sagoe-Crenstil K, Sirivivatnanon V. Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem. Concr. Res., 2007, 37(4): 512.

[9]

Xu H, Van Deventer JSJ. Geopolymerisation of multiple minerals. Miner. Eng., 2002, 15(12): 1131.

[10]

Phair JW, Van Deventer JSJ. Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Process., 2002, 66(1–4): 121.

[11]

Komnitsas K, Zaharaki D, Perdikatsis V. Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci., 2007, 42(9): 3073.

[12]

Panias D, Giannopoulou I, Perraki T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. A, 2007, 301(1–3): 246.

[13]

Mohsen Q, Mostafa NY. Investigating the possibility of utilising low kaolinitic clays in production of geopolymer bricks. Ceram. Silik., 2010, 54(2): 160

[14]

Yang N, Zeng Y. Zeng Y, Fang Y, Xu L. Research and development of chemically-activated cementing materials, necessity and feasibility. Research Progress in Chemically-Activated Cementing Materials, 2005, Nanjing, Southeast University Press, 1

[15]

Yip CK, Lukey GC, Provis JL, Van Deventer JSJ. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res., 2008, 38(4): 554.

[16]

Rahier H, Wastiels J, Biesemans M, Willlem R, Assche G V, Van Mele B. Reaction mechanism, kinetics and high temperature transformations of geopolymers. J. Mater. Sci., 2007, 42(9): 2982.

[17]

Hos JP, McCormick PG, Byrne LT. Investigation of a synthetic aluminosilicate inorganic polymer. J. Mater. Sci., 2002, 37(11): 2311.

[18]

Brew DRM, MacKenzie KJD. Geopolymer synthesis using silica fume and sodium aluminate. J. Mater. Sci., 2007, 42(11): 3990.

[19]

Freidin C. Cementless pressed blocks from waste products of coal-firing power station. Constr. Build. Mater., 2007, 21(1): 12.

[20]

Yang KH, Song JK, Ashour AF, Lee ET. Properties of cementless mortars activated by sodium silicate. Constr. Build. Mater., 2008, 22(9): 1981.

[21]

Diop MB, Grutzeck MW. Low temperature process to create brick. Constr. Build. Mater., 2008, 22(6): 1114.

[22]

Billong N, Melo UC, Louvet F, Njopwouo D. Properties of compressed lateritic soil stabilized with a burnt clay-lime binder: effect of mixture components. Constr. Build. Mater., 2009, 23(6): 2457.

[23]

Khater HM. Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution. Ceram. Silik., 2010, 54(4): 325

[24]

Rashad AM. Metakaolin as cementitious material: history, scours, production and composition — A comprehensive overview. Constr. Build. Mater., 2013, 41, 303.

[25]

Moore DM. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 1989, New York, Oxford University Press

[26]

Dombrowski T. Carty WM, Sinton CW. The origins of kaolinite. Implications for utilization. Science of Whitewares II, 2000, Westerville, OH, American Ceramic Society, 3

[27]

Farmer VC. Infrared Spectra of Minerals, 1974, London, Mineralogical Society, 331

[28]

Wilson MJ. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, 1994, London, Chapman & Hall

[29]

Van der Marel HW, Beutelspacher H. Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures, 1976, Amsterdam, Elsevier

[30]

Farmer VC. Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochim. Acta A, 2000, 56(5): 927.

[31]

Ramasamy V, Murgesan S, Mullainathan S. Distribution and characterization of minerals in Cauvery river sediments by grain size analysis: a new approach by FT-IR study. Ind. Mineral., 2005, 39(2): 91

[32]

Gereli G, Seki Y, Kuşoğlu IM, Yurdakoç K. Equilibrium and kinetics for the sorption of promethazine hydrochloride onto K10 montmorillonite. J. Colloid Interface Sci., 2006, 299(1): 155.

[33]

Klinkenberg M, Dohrmann R, Kaufhold S, Stanjek H. A new method for identifying Wyoming bentonite by ATR-FTIR. Appl. Clay Sci., 2006, 33(3–4): 195.

[34]

Malek Z, Balek V, Garfinkel-Shweky D, Yariv S. The study of the dehydration and dehydroxylation of smectites by emanation thermal analysis. J. Therm. Anal. Calorim., 1997, 48(1): 83.

[35]

Bergaya F, Theng BKG, Lagaly G. Handbook of Clay Science, 2011, Amsterdam, Elsevier, 289

[36]

Saikia NJ, Bharali DJ, Sengupta P, Bordoloi D, Goswamee RL, Saikia PC, Borthakur PC. Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Appl. Clay Sci., 2003, 24(1–2): 93.

[37]

Varlamov VP, Kroichuk LA, Toporkova AA. A new method for estimating the drying sensitivity of clay. Ceram. Int., 1976, 2(2): 98.

[38]

Smykatz-Kloss W. Differential Thermal Analysis: Application and Results in Mineralogy, 1974, Berlin, Springer-Verlag

[39]

Nastro V, Vuono D, Guzzo M, Niceforo G, Bruno I, De Luca P. Characterisation of raw materials for production of ceramics. J. Therm. Anal. Calorim., 2006, 84(1): 181.

[40]

Gallagher PK, Brown ME, Kemp RB. Handbook of Thermal Analysis and Calorimetry: Applications to Inorganic and Miscellaneous Materials, 2003, Amsterdam, Elsevier

[41]

Castelein O, Aldon J, Olivier-Fourcade J, Bonnet JC, Blanchart P. 57Fe Mössbauer study of iron distribution in a kaolin raw material: influence of the temperature and the heating rate. J. Eur. Ceram. Soc., 2002, 22(11): 1767.

[42]

Soro NS, Blanchart P, Bonnet JP, Gaillard JM, Huger M, Touré A. Sintering of kaolin in presence of ferric compound: study by ultrasonic echography. J. Phys. IV, 2005, 123, 131

[43]

Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity. Appl. Clay Sci., 2001, 20(1–2): 73.

[44]

Mostafa NY, El-Hemaly SAS, Al-Wakeel EI, El-Korashy SA, Brown PW. Characterization and evaluation of the pozzolanic activity of Egyptian industrial by-products: I. Silica fume and dealuminated kaolin. Cem. Concr. Res., 2001, 31(3): 467.

[45]

He CL, Osbaeck B, Makovicky E. Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem. Concr. Res., 1995, 25(8): 1691.

[46]

Buchwald A, Hohmann M, Posern K, Brendler E. The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl. Clay Sci., 2009, 46(3): 300.

[47]

Zaharaki D, Komnitsas K. Effect of additives on the compressive strength of slag-based inorganic polymers. Global NEST J., 2009, 11(2): 137

[48]

Temuujin J, Riessen A V, Williams R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater., 2009, 167(1–3): 82.

[49]

Buchwald A, Dombrowski K, Weil M. The influence of calcium content on the performance of geopolymeric binder especially the resistance against acids. 4th International Conference on Geopolymers, 2005 35

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/