Characterization of the structural details of residual austenite in the weld metal of a 9Cr1MoNbV welded rotor

Xia Liu , Hui-jun Ji , Peng Liu , Peng Wang , Feng-gui Lu , Yu-lai Gao

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (6) : 563 -568.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (6) : 563 -568. DOI: 10.1007/s12613-014-0942-5
Article

Characterization of the structural details of residual austenite in the weld metal of a 9Cr1MoNbV welded rotor

Author information +
History +
PDF

Abstract

The existence of residual austenite in weld metal plays an important role in determining the properties and dimensional accuracy of welded rotors. An effective corrosive agent and the metallographic etching process were developed to clearly reveal the characteristics of residual austenite in the weld metal of a 9Cr1MoNbV welded rotor. Moreover, the details of the distribution, shape, length, length-to-width ratio, and the content of residual austenite were systematically characterized using the Image-Pro Plus image analysis software. The results revealed that the area fraction of residual austenite was approximately 6.3% in the observed weld seam; the average area, length, and length-to-width ratio of dispersed residual austenite were quantitatively evaluated to be (5.5 ± 0.1) μm2, (5.0 ± 0.1) μm, and (2.2 ± 0.1), respectively. The newly developed corrosive agent and etching method offer an appropriate approach to characterize residual austenite in the weld metal of welded rotors in detail.

Keywords

steel research / austenite / characterization / weld metal / color metallography

Cite this article

Download citation ▾
Xia Liu, Hui-jun Ji, Peng Liu, Peng Wang, Feng-gui Lu, Yu-lai Gao. Characterization of the structural details of residual austenite in the weld metal of a 9Cr1MoNbV welded rotor. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(6): 563-568 DOI:10.1007/s12613-014-0942-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boulter AE, Stone CG. Historical development of rotor and stator winding insulation materials and systems. IEEE Electr. Insul. Mag., 2004, 20(3): 25.

[2]

Henderson MB, Arrell D, Larsson R, Heobel M, Marchant G. Nickel based superalloy welding practices for industrial gas turbine applications. Sci. Technol. Weld. Joining, 2004, 9(1): 13.

[3]

Rajasekhar K, Harendranath CS, Raman R, Kulkarni SD. Microstructural evolution during solidification of austenitic stainless steel weld metals: a color metallographic and electron microprobe analysis study. Mater. Charact., 1997, 38(2): 53.

[4]

Gates JD, Atrens A, Smith I. Microstructure of as-quenched 3.5 NiCrMoV rotor steel: Part I. General structure and retained austenite. Materialwiss. Werkstofftech., 1987, 18(5): 165.

[5]

Bilmes PD, Solari M, Llorente CL. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals. Mater. Charact., 2001, 46(4): 285.

[6]

Bangaru NRV, Sachdev AK. Influence of cooling rate on the microstructure and retained austenite in an intercritically annealed vanadium containing HSLA steel. Metall. Trans. A, 1982, 13(11): 1899.

[7]

Wang HH, Zhang HQ, Li JF. Microstructural evolution of 9Cr-1Mo deposited metal subjected to weld heating. J. Mater. Process. Technol., 2009, 209(6): 2803.

[8]

Totemeier TC, Simpson JA, Tian H. Effect of weld intercooling temperature on the structure and impact strength of ferritic-martensitic steels. Mater. Sci. Eng. A, 2006, 426(1–2): 323.

[9]

Andrén HO, Cai GG, Svensson LE. Microstructure of heat resistant chromium steel weld metals. Appl. Surf. Sci., 1995, 87–88, 200.

[10]

Syn CK, Fultz B, Morris JW. Mechanical stability of retained austenite in tempered 9Ni steel. Metall. Trans. A, 1978, 9(11): 1635.

[11]

Ryu JH, Kim DI, Kim HS, Bhadeshia HKDH, Suh DW. Strain partitioning and mechanical stability of retained austenite. Scripta Mater., 2010, 63(3): 297.

[12]

Wang LJ, Cai QW, Wu HB, Yu W. Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels. Int. J. Miner. Metall. Mater., 2011, 18(5): 543.

[13]

Thomas G. Retained austenite and tempered martensite embrittlement. Metall. Trans. A, 1978, 9(3): 439.

[14]

Bhadeshia HKD, Edmonds DV. Tempered martensite embrittlement: role of retained austenite and cementite. Mater. Sci., 1979, 13(6): 325

[15]

Saleh MH, Priestner R. Retained austenite in dual-phase silicon steels and its effect on mechanical properties. J. Mater. Process. Technol., 2001, 113(1–3): 587.

[16]

Nelson DE, Baeslack W A III Lippold JC. Characterization of the weld structure in a duplex stainless steel using color metallography. Mater. Charact., 1997, 39(2–5): 467.

[17]

Jiang HT, Wu HB, Tang D, Liu Q. Influence of isothermal bainitic processing on the mechanical properties and microstructure characterization of TRIP steel. J. Univ. Sci. Technol. Beijing, 2008, 15(5): 574.

[18]

Zhao L, van Dijk NH, Brück E, Sietsma J, van der Zwaag S. Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels. Mater. Sci. Eng. A, 2001, 313(1–2): 145.

[19]

Chen GA, Yang WY, Guo SZ, Sun ZQ. Characteristics of microstructural evolution during deformation-enhanced ferrite transformation in Nb-microalloyed HSLA steel. J. Univ. Sci. Technol. Beijing, 2007, 14(1): 36.

[20]

Yang YH, Cai QW, Tang D, Wu HB. Precipitation and stability of reversed austenite in 9Ni steel. Int. J. Miner. Metall. Mater., 2010, 17(5): 587.

[21]

Girault E, Jacques P, Harlet P, Mols K, Humbeeck JV, Aernoudt E, Delannay F. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels. Mater. Charact., 1998, 40(2): 111.

[22]

Timokhina IB, Hodgson PD, Pereloma EV. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall. Mater. Trans. A, 2004, 35(8): 2331.

[23]

Cota AB, Santos DB. Microstructural characterization of bainitic steel submitted to torsion testing and interrupted accelerated cooling. Mater. Charact., 2000, 44(3): 291.

[24]

Oñoro J. Weld metal microstructure analysis of 9–12% Cr steels. Int. J. Pressure Vessels Piping, 2006, 83(7): 540.

[25]

Liu P, Lu FG, Liu X, Ji HJ, Gao YL. Study on fatigue property and microstructure characteristics of welded nuclear power rotor with heavy section. J. Alloys Compd., 2014, 584, 430.

[26]

Ray A, Dhua SK. Microstructural manifestations in color: some applications for steels. Mater. Charact., 1996, 37(1): 1.

[27]

Zhang YH, Ma YL, Kang YL, Yu H. Mechanical properties and microstructure of TRIP steels produced using TSCR process. J. Univ. Sci. Technol. Beijing, 2006, 13(5): 416.

[28]

Szabo PJ, Kardos I. Correlation between grain orientation and the shade of color etching. Mater. Charact., 2010, 61(8): 814.

[29]

Giacchi JV, Morando CN, Fornaro O, Palacio HA. Microstructural characterization of as-cast biocompatible Co-Cr-Mo alloys. Mater. Charact., 2011, 62(1): 53.

[30]

Liu P, Lu FG, Liu X, Gao YL. Metallographic etching and microstructure characterization of NiCrMoV rotor steels for nuclear power. Int. J. Miner. Metall. Mater., 2013, 20(12): 1164.

[31]

Bockris J O’M, Drazic D, Despic AR. The electrode kinetics of the deposition and dissolution of iron. Electrochim. Acta, 1961, 4(2–4): 325.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/