Simulation of three-phase flow and lance height effect on the cavity shape

Kai Dong , Rong Zhu , Wei Gao , Fu-hai Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (6) : 523 -530.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (6) : 523 -530. DOI: 10.1007/s12613-014-0938-1
Article

Simulation of three-phase flow and lance height effect on the cavity shape

Author information +
History +
PDF

Abstract

A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The effect of different lance heights on the cavity shape was investigated using the volume of fluid (VOF) method. Numerical simulation results can reflect the actual molten bath surface waves impinged by the supersonic oxygen jets. With increasing lance height, the cavity depth decreases, and the cavity area, varying like a parabola, increases and then decreases. The cavity area maximizes at the lance height of 1.3 m. Under the three different lance heights simulated in this study, all of the largest impact velocities at the molten bath surface are between 50 m/s and 100 m/s.

Keywords

metallurgical furnaces / basic oxygen converters / lance height / cavity shape / computational fluid dynamics / computer simulation

Cite this article

Download citation ▾
Kai Dong, Rong Zhu, Wei Gao, Fu-hai Liu. Simulation of three-phase flow and lance height effect on the cavity shape. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(6): 523-530 DOI:10.1007/s12613-014-0938-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng J, Bao YP, Wu X, Cui H. Mathematical model of deoxidization with post stirring in a combined blowing converter. Int. J. Miner. Metall. Mater., 2010, 17(5): 541.

[2]

Li GH, Wang B, Liu Q, Tian XZ, Zhu R, Hu LN, Cheng GG. A process model for BOF process based on bath mixing degree. Int. J. Miner. Metall. Mater., 2010, 17(6): 715.

[3]

Higuchi Y, Tago Y. Effect of lance design on jet behavior and spitting rate in top blown process. ISIJ Int., 2001, 41(12): 1454.

[4]

Solórzano-López J, Zenit R, Ramírez-Argáez MA. Mathematical and physical simulation of the interaction between a gas jet and a liquid free surface. Appl. Math. Model, 2011, 35(10): 4991.

[5]

Nordquist A, Kumbhat N, Jonsson L, Jönsson P. The effect of nozzle diameter, lance height and flow rate on penetration depth in a top-blown water model. Steel Res. Int., 2006, 77(2): 82

[6]

Li BK, Yin HB, Zhou CQ, Tsukihashi F. Modeling of three-phase flows and behavior of slag/steel interface in an argon gas stirred ladle. ISIJ Int., 2008, 48(12): 1704.

[7]

Ersson M, Höglund L, Tilliander A, Jonsson L, Jönsson P. Dynamic coupling of computational fluid dynamics and thermodynamics software: applied on a top blown converter. ISIJ Int., 2008, 48(2): 147.

[8]

Koria SC, Lange KW. Penetrability of impinging gas jets in molten steel bath. Steel Res., 1987, 58(9): 421

[9]

Tago Y, Higuchi Y. Fluid flow analysis of jets from nozzles in top blown process. ISIJ Int., 2003, 43(2): 209.

[10]

Olivares O, Elias A, Sanchez R, Diaz-Cruz M, Morales RD. Physical and mathematical models of gas-liquid fluid dynamics in LD converters. Steel Res., 2002, 73(2): 44

[11]

Alam M, Naser J, Brooks G, Fontana A. A computational fluid dynamics model of shrouded supersonic jet impingement on a water surface. ISIJ Int., 2012, 52(6): 1026.

[12]

Szekely J, Asai S. Turbulent fluid flow phenomena in metals processing operations: mathematical description of the fluid flow field in a bath caused by an impinging gas jet. Metall. Trans., 1974, 5, 463.

[13]

Asahara N, Naito K, Kitagawa I, Matsuo M, Kumakura M, Iwasaki M. Fundamental study on interaction between top blown jet and liquid bath. Steel Res. Int., 2011, 82(5): 587.

[14]

Yuan ZF, Fan YF. The Technology of Oxygen Lance in Steelmaking, 2007, Beijing, Metallurgy Industry Press, 89

[15]

Qian F, Muthasaran R, Farouk B. Studies of interface deformations in single- and multi-layered liquid baths due to an impinging gas jet. Metall. Mater. Trans. B, 1996, 27(6): 911.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/