Effects of basicity and MgO content on the viscosity of the SiO2-CaO-MgO-9wt%Al2O3 slag system

Yun-ming Gao , Shao-bo Wang , Chuan Hong , Xiu-juan Ma , Fu Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (4) : 353 -362.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (4) : 353 -362. DOI: 10.1007/s12613-014-0916-7
Article

Effects of basicity and MgO content on the viscosity of the SiO2-CaO-MgO-9wt%Al2O3 slag system

Author information +
History +
PDF

Abstract

The effects of basicity and MgO content on the viscosity of SiO2-CaO-MgO-9wt%Al2O3 slags with basicity from 0.4 to 1.0 and MgO content from 13wt% to 19wt% were investigated using the rotating cylinder method. A correlation between the viscosity and the slag structure was determined by Fourier transform infrared (FTIR) spectroscopy. It is indicated that the complex network structure of the slag melt is depolymerized into simpler network units with increasing basicity or MgO content, resulting in a continuous decrease in viscosity of the slag. The viscosity is strongly dependent on the combined action of basic oxide components in the slag. Under the present experimental conditions, increasing the basicity is found to be more effective than increasing the MgO content in decreasing the viscosity of the slag. At higher temperatures, the increase of basicity or MgO content does not appreciably decrease the viscosity of the slag, as it does at lower temperatures. The calculated activation energy of viscous flow is between 154 and 200 kJ·mol−1, which decreases with an increase in basicity from 0.4 to 1.0 at a fixed MgO content in the range of 13wt% to 19wt%.

Keywords

slags / viscosity / basicity / magnesia / activation energy / Fourier transform infrared spectroscopy

Cite this article

Download citation ▾
Yun-ming Gao, Shao-bo Wang, Chuan Hong, Xiu-juan Ma, Fu Yang. Effects of basicity and MgO content on the viscosity of the SiO2-CaO-MgO-9wt%Al2O3 slag system. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(4): 353-362 DOI:10.1007/s12613-014-0916-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Machin JS, Yee TB, Hanna DL. Viscosity studies of system CaO-MgO-Al2O3-SiO2: III. 35, 45, and 50% SiO2. J. Am. Ceram. Soc., 1952, 35(12): 322.

[2]

Shankar A, Görnerup M, Lahiri AK, Seetharaman S. Experimental investigation of the viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 slags. Metall. Mater. Trans. B, 2007, 38(6): 911.

[3]

Kim H, Kim WH, Sohn I, Min DJ. The effect of MgO on the viscosity of the CaO-SiO2-20wt% Al2O3-MgO slag system. Steel Res. Int., 2010, 81(4): 261.

[4]

Zhang GH, Chou KC, Mills K. Modelling viscosities of CaO-MgO-Al2O3-SiO2 molten slags. ISIJ Int., 2012, 52(3): 355.

[5]

Hu XJ, Ren ZS, Zhang GH, Wang LJ, Chou KC. A model for estimating the viscosity of blast furnace slags with optical basicity. Int. J. Miner. Metall. Mater., 2012, 19(12): 1088.

[6]

Nakamoto M, Tanaka T, Lee J, Usui T. Evaluation of viscosity of molten SiO2-CaO-MgO-Al2O3 slags in blast furnace operation. ISIJ Int., 2004, 44(12): 2115.

[7]

Stovpchenko AP, Medovar LB. Acid process in modern steelmaking. Russ. Metall., 2008, 2008(7): 542.

[8]

Kim HJ, Paramore J, Allanore A, Sadoway DR. Electrolysis of molten iron oxide with an iridium anode: the role of electrolyte basicity. J. Electrochem. Soc., 2011, 158(10): E101.

[9]

Gao YM, Wang B, Wang SB, Peng S. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO. J. Min. Metall. Sect. B, 2013, 49(1): 49.

[10]

Y. Kawai, On the Viscosities of Molten Slags: II. Viscosities of CaO — SiO 2 — Al2O3MgO slags [DB/OL], [2013-12-10]. http://ir.library.tohoku.ac.jp/re/bitstream/10097/26544/1/KJ00004195839.pdf.

[11]

Kim H, Matsuura H, Tsukihashi F, Wang W, Min DJ, Sohn I. Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate-based slags containing 10 mass pct MgO. Metall. Mater. Trans. B, 2013, 44(1): 5.

[12]

Kim WH, Min DJ. Effect of alkaline/alkaline-earth oxides on viscous behavior of iron-making slag. Proceedings of the Ninth International Conference on Molten Slags, Fluxes and Salts (MOLTEN12), 2012, Beijing, CSM

[13]

Lee YS, Min DJ, Jung SM, Yi SH. Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO. ISIJ Int., 2004, 44(8): 1283.

[14]

Kim JR, Lee YS, Min DJ, Jung SM, Yi SH. Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO. ISIJ Int., 2004, 44(8): 1291.

[15]

Xu JF, Zhang JY, Jie C, Ruan F, Chou KC. Experimental measurements and modelling of viscosity in CaO-Al2O3-MgO slag system. Ironmaking Steelmaking, 2011, 38(5): 329.

[16]

Tang XL, Zhang ZT, Guo M, Zhang M, Wang XD. Viscosities behavior of CaO-SiO2-MgO-Al2O3 slag with low mass ratio of CaO to SiO2, and wide range of Al2O3 content. J. Iron Steel Res. Int., 2011, 18(2): 1.

[17]

Řeháčková L, Rosypalová S, Dudek R, Dobrovská J. Influence of CaO content on viscosity of molten CaO-Al2O3-SiO2 system. Arch. Mater. Sci. Eng., 2013, 59(2): 61

[18]

Park H, Park JY, Kim GH, Sohn I. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags. Steel Res. Int., 2012, 83(2): 150.

[19]

Xie D, Mao Y, Zhu Y. Viscosity and flow behaviour of TiO2-containing blast furnace slags under reducing conditions. VII International Conference on Molten Slags, Fluxes and Salts, 2004, Cape Town, SAIMM, 43

[20]

Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Robelin C, Petersen S. FactSage thermochemical software and databases: recent developments. Calphad, 2009, 33(2): 295.

[21]

Cho D, Moon I, Whang S, Oh M. High temperature slag viscometry. J. Ind. Eng. Chem., 2001, 7(1): 30

[22]

Pan C, Lv X, Bai C, Liu X, Li D. Melting features and viscosity of SiO2-CaO-MgO-Al2O3-FeO nickel slag in laterite metallurgy. J. Min. Metall. Sect. B, 2013, 49(1): 9.

[23]

Park JH, Min DJ, Song HS. Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2(-MgO)-Al2O3 slags. Metall. Mater. Trans. B, 2004, 35(2): 269.

[24]

Liao JL, Zhang YY, Sridhar S, Wang XD, Zhang ZT. Effect of Al2O3/SiO2 ratio on the viscosity and structure of slags. ISIJ Int., 2012, 52(5): 753

[25]

Chen M, Raghunath S, Zhao B. Viscosity measurements of “FeO”-SiO2 slag in equilibrium with metallic Fe. Metall. Mater. Trans. B, 2013, 44(3): 506.

[26]

Forsbacka L, Holappa L. Viscosity of SiO2-CaO-CrOx slags in contact with metallic chromium and application of the Iida model. VII International Conference on Molten Slags, Fluxes and Salts, 2004, Cape Town, SAIMM, 129

[27]

Kim GH, Sohn I. A study of the viscous properties with NaF additions in the CaO-SiO2-12 mass pct Na2O based slags. Metall. Mater. Trans. B, 2011, 42(6): 1218.

[28]

Park HS, Park SS, Sohn I. The viscous behavior of FeOt-Al2O3-SiO2 copper smelting slags. Metall. Mater. Trans. B, 2011, 42(4): 692.

[29]

Park JH, Min DJ, Song HS. FT-IR spectroscopic study on structure of CaO-SiO2 and CaO-SiO2-CaF2 slags. ISIJ Int., 2002, 42(4): 344.

[30]

Ueda S, Koyo H, Ikeda T, Kariya Y, Maeda M. Infrared emission spectra of CaF2-CaO-SiO2 melt. ISIJ Int., 2000, 40(8): 739.

[31]

McMillan P. Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am. Mineral., 1984, 69, 622

[32]

Lee YS, Kim JR, Yi SH, Min DJ. Viscous behaviour of CaO-SiO2-Al2O3-MgO-FeO slag. VII International Conference on Molten Slags, Fluxes and Salts, 2004, Cape Town, SAIMM, 225

[33]

Kim GH, Kim CS, Sohn I. Viscous behavior of alumina rich calcium-silicate based mold fluxes and its correlation to the melt structure. ISIJ Int., 2013, 53(1): 170.

[34]

Park JH, Kim DS, Lee YD, Song HS, Min DJ. The viscosities and structures of calcium silicate slags containing MgO, CaF2, and A12O3. VII International Conference on Molten Slags, Fluxes and Salts, 2004, Cape Town, SAIMM, 157

[35]

Park JH, Kim H, Min DJ. Novel approach to link between viscosity and structure of silicate melts via Darken’s excess stability function: focus on the amphoteric behavior of alumina. Metall. Mater. Trans. B, 2008, 39(1): 150.

[36]

Huang XH. Metallurgical Principles in Ironmaking and Steelmaking, 2013 4th Ed. Beijing, Metallurgical Industry Press, 251

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/