Structural refinement of 00Cr13Ni5Mo2 supermartensitic stainless steel during single-stage intercritical tempering

Da-kun Xu , Yong-chang Liu , Zong-qing Ma , Hui-jun Li , Ze-sheng Yan

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (3) : 279 -288.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (3) : 279 -288. DOI: 10.1007/s12613-014-0906-9
Article

Structural refinement of 00Cr13Ni5Mo2 supermartensitic stainless steel during single-stage intercritical tempering

Author information +
History +
PDF

Abstract

The 00Cr13Ni5Mo2 supermartensitic stainless steel was first tempered at 570–730°C for 2 h to observe the microstructure and hardness changes. The tempering temperature was set to 600, 650, and 700°C, which is below, equal to, and above the austenite transformation start temperature, respectively, for each holding period to investigate the effects of tempering time on the structure and properties of the steel. The microstructure of the specimens was examined by optical microscopy and transmission electronic microscopy, and the phase composition was detected by X-ray diffraction. As expected, lath refinement was observed in the steel tempered at 700°C, and the refinement degree significantly depended on the tempering time. Contrary to normal steel softening by tempering, the hardness performance of the steel was significantly enhanced primarily because of the refinement of martensite laths after single-stage intercritical tempering. It is believed that the reverse transformation of martensite (α′) to austenite (γ) is responsible for the refinement.

Keywords

stainless steel / tempering / retained austenite / phase transitions

Cite this article

Download citation ▾
Da-kun Xu, Yong-chang Liu, Zong-qing Ma, Hui-jun Li, Ze-sheng Yan. Structural refinement of 00Cr13Ni5Mo2 supermartensitic stainless steel during single-stage intercritical tempering. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(3): 279-288 DOI:10.1007/s12613-014-0906-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bojack A, Zhao L, Morris PF, Sietsma J. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel. Mater. Charact., 2012, 71, 77.

[2]

Bilmes P D, Llorente CL, Méndez CM, Gervasi CA. Microstructure, heat treatment and pitting corrosion of 13CrNiMo plate and weld metals. Corros. Sci., 2009, 51(4): 876.

[3]

Qin B, Wang ZY, Sun QS. Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel. Mater. Charact., 2008, 59(8): 1096.

[4]

Song Y Y, Ping DH, Yin FX, Li XY, Li YY. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel. Mater. Sci. Eng. A, 2010, 527(3): 614.

[5]

Song Y Y, Li XY, Rong LJ, Li YY. Anomalous Phase Transformation from martensite to austenite in Fe-13%Cr-4%Ni-Mo martensitic stainless steel. J. Mater. Sci. Technol., 2010, 26(9): 823.

[6]

Sanctis M D, Valentini R, Lovicu G, Dimatteo A, Ishak R, Migliaccio U, Montanari R, Pietrangeli E. Microstructural evolution during tempering of 16Cr-5Ni stainless steel: effects on final mechanical properties. Mater. Sci. Forum, 2013, 762, 176.

[7]

Song Y Y, Li XY, Rong LJ, Li YY. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steels. Mater. Sci. Eng. A, 2011, 528(12): 4075.

[8]

Bilmes P D, Solari M, Llorente CL. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals. Mater. Charact., 2001, 46(4): 285.

[9]

Ma X P, Wang LJ, Liu CM, Subramanian SV. Role of Nb in low interstitial 13Cr super martensitic stainless steel. Mater. Sci. Eng. A, 2011, 528(22–23): 6812.

[10]

Ma X P, Wang LJ, Liu CM, Subramanian SV. Micro structure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater. Sci. Eng. A, 2012, 539, 271.

[11]

Zou D N, Han Y, Zhang W, Fang XD. Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel. J. Iron Steel Res. Int., 2010, 17(8): 50.

[12]

Rodrigues C AD, Lorenzo PLD, Sokolowski A, Barbosa CA, Rollo JMDA. Titanium and molybdenum content in supermartensitic stainless steel. Mater. Sci. Eng. A, 2007, 460–461, 149.

[13]

Liu Y R, Ye D, Yong QL, Su J, Zhao KY, Jiang W. Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel. J. Iron Steel Res. Int., 2011, 18(11): 60.

[14]

Hubáčková J, Číhal V, Mazanec K. Two-stage tempering of steel 13%Cr6%Ni. Materialwiss. Werkstofftech., 1984, 15(12): 411.

[15]

Tanaka M, Choi C. Effects of C contents and Ms temperatures on the hardness of martensitic Fe-Ni-C alloys. Trans. Iron Steel Inst. Jpn., 1972, 12(1): 16

[16]

Park E S, Yoo DK, Sung JH, Kang CY, Lee JH, Sung JH. Formation of reversed austenite during tempering of 14Cr-7Ni-0.3Nb-0.7Mo-0.03C super martensitic stainless steel. Met. Mater. Int., 2004, 10(6): 521.

[17]

Al Dawood M, El Mahallawi IS, Abd El Azim ME, El Koussy MR. Thermal aging of 16Cr-5Ni-1Mo stainless steel: Part 1. Microstructural analysis. Mater. Sci. Technol., 2004, 20(3): 363.

[18]

Al Dawood M, El Mahallawi IS, Abd El Azim ME, El Koussy MR. Thermal aging of 16Cr-5Ni-1Mo stainless steel: Part 2. Mechanical property characterisation. Mater. Sci. Technol., 2004, 20(3): 370.

[19]

Lee T H, Kim SJ, Jung YC. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900°C. Metall. Mater. Trans. A, 2000, 31(7): 1713.

[20]

Hui W J. Ultra-Fine Grained Steels, 2009, Berlin, Heidelberg, Springer, 300.

[21]

Shirazi H, Miyamoto G, Hossein Nedjad S, Ghasemi-Nanesa H, Nili Ahmadabadi M, Furuhara T. Microstructural evaluation of austenite reversion during intercritical annealing of Fe-Ni-Mn martensitic steel. J. Alloys Compd., 2013, 577(1): 572.

[22]

Apple C A, Krauss G. The effect of heating rate on the martensite to austenite transformation in Fe-Ni-C alloys. Acta Metall., 1972, 20(7): 849.

[23]

Leem D S, Lee YD, Jun JH, Choi CS. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel. Scripta Mater., 2001, 45(7): 767.

[24]

Kapoor R, Kumar L, Batra IS. A dilatometric study of the continuous heating transformations in 18wt% Ni maraging steel of grade 350. Mater. Sci. Eng. A, 2003, 352(1–2): 318.

[25]

Lee Y K, Shin HC, Leem DS, Choi JY, Jin W, Choi CS. Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-13Cr-7Ni (wt%) martensitic stainless steel. Mater. Sci. Eng. A, 2003, 19(3): 393

[26]

Liu L, Yang ZG, Zhang C. Effect of retained austenite on austenite memory of a 13% Cr-5% Ni martensitic steel. J. Alloys Compd., 2013, 577(Suppl.1): 654.

[27]

Song Y Y, Li XY, Rong LJ, Ping DH, Yin FX, Li YY. Formation of the reversed austenite during intercritical tempering in a Fe-13%Cr-4%Ni-Mo martensitic stainless steel. Mater. Lett., 2010, 64(13): 1411.

[28]

Chen H, Gounê M, van der Zwaag S. Analysis of the stagnant stage in diffusional phase transformations starting from austenite-ferrite mixtures. Comput. Mater. Sci., 2012, 55, 34.

[29]

Chen H, Kuziak R, van der Zwaag S. Experimental evidence of the effect of alloying additions on the stagnant stage length during cyclic partial phase transformations. Metall. Mater. Trans. A, 2013, 44(13): 5617.

[30]

Wang L J, Cai QW, Wu HB, Yu W. Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels. Int. J. Miner. Metall. Mater., 2011, 18(5): 543.

[31]

Smith H, West DRF. The reversion of martensite to austenite in certain stainless steels. J. Mater. Sci., 1973, 8(10): 1413.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/