Mechanical properties and characteristics of nanometer-sized precipitates in hot-rolled low-carbon ferritic steel

Xiao-pei Wang , Ai-min Zhao , Zheng-zhi Zhao , Yao Huang , Liang Li , Qing He

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (3) : 266 -272.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (3) : 266 -272. DOI: 10.1007/s12613-014-0904-y
Article

Mechanical properties and characteristics of nanometer-sized precipitates in hot-rolled low-carbon ferritic steel

Author information +
History +
PDF

Abstract

The microstructures and properties of hot-rolled low-carbon ferritic steel have been investigated by optical microscopy, field-emission scanning electron microscopy, transmission electron microscopy, and tensile tests after isothermal transformation from 600°C to 700°C for 60 min. It is found that the strength of the steel decreases with the increment of isothermal temperature, whereas the hole expansion ratio and the fraction of high-angle grain boundaries increase. A large amount of nanometer-sized carbides were homogeneously distributed throughout the material, and fine (Ti, Mo)C precipitates have a significant precipitation strengthening effect on the ferrite phase because of their high density. The nanometer-sized carbides have a lattice parameter of 0.411–0.431 nm. After isothermal transformation at 650°C for 60 min, the ferrite phase can be strengthened above 300 MPa by precipitation strengthening according to the Ashby-Orowan mechanism.

Keywords

ferritic steel / nanoparticles / mechanical properties / carbides / precipitation / strengthening

Cite this article

Download citation ▾
Xiao-pei Wang, Ai-min Zhao, Zheng-zhi Zhao, Yao Huang, Liang Li, Qing He. Mechanical properties and characteristics of nanometer-sized precipitates in hot-rolled low-carbon ferritic steel. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(3): 266-272 DOI:10.1007/s12613-014-0904-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen YF, Wang CM, Sun X. A micro-alloyed ferritic steel strengthened by nanoscale precipitates. Mater. Sci. Eng. A, 2011, 528(28): 8150.

[2]

Wang ZG, Zhao AM, Zhao ZZ, Chen JY, Tang D, Zhu GS. Microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels. Int. J. Miner. Metall. Mater., 2012, 19(10): 915.

[3]

Show BK, Veerababu R, Balamuralikrishnan R, Malakondaiah G. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel. Mater. Sci. Eng. A, 2010, 527(6): 1595.

[4]

Lagneborg R, Zajac S. A model for interphase precipitation in V-microalloyed structural steels. Metall. Mater. Trans. A, 2001, 32(1): 39.

[5]

Zhu YZ, Xu JP. A method to study interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel. Int. J. Miner. Metall. Mater., 2012, 19(9): 821.

[6]

Han QH, Kang YL, Zhao XM, Gao LF, Qiu XS. High-temperature properties and microstructure of Mo microalloyed ultra-high-strength steel. Int. J. Miner. Metall. Mater., 2011, 18(4): 407.

[7]

Chen CY, Yen HW, Kao FH, Li WC, Huang CY, Yang JR, Wang SH. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides. Mater. Sci. Eng. A, 2009, 499(1–2): 162.

[8]

Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int., 2004, 44(11): 1945.

[9]

Yen HW, Chen PY, Huang CY, Yang JR. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel. Acta Mater., 2011, 59(16): 6264.

[10]

Mukherjee S, Timokhina IB, Zhu C, Ringer SP, Hodgson PD. Three-dimensional atom probe microscopy study of interphase precipitation and nanoclusters in thermomechanically treated titanium-molybdenum steels. Acta Mater., 2013, 61(7): 2521.

[11]

Gladman T. Precipitation hardening in metals. Mater. Sci. Technol., 1999, 15(1): 30.

[12]

Batte AD, Honeycombe RWK. Strengthening of ferrite by vanadium carbide precipitation. Met. Sci., 1973, 7(1): 160.

[13]

Liao B, Xiao FR. Research on microstructure and strength-toughening mechanism of acicular ferrite pipeline steel. Trans. Mater. Heat Treat, 2009, 30(2): 57

[14]

Lan LY, Qiu CL, Zhao DW, Gao XH. Toughness of welding heat affected zone in high strength steel with low welding crack susceptibility. Trans. China Weld. Inst., 2012, 33(1): 41

[15]

Phillips A, Kaul H, Burg J, Killmore C, Williams J, Campbell P, Blejde W. Effect of microstructure and texture on the edge formability of light gauge strip steel. ISIJ Int., 2011, 51(5): 832.

[16]

Kamibayashi K, Tanabe Y, Takemoto Y, Shimizu I, Senuma T. Influence of Ti and Nb on the strength-ductility-hole expansion ratio balance of hot-rolled low-carbon high-strength steel sheets. ISIJ Int., 2012, 52(1): 151.

[17]

Yamada K, Sato K, Nakamichi H. Analysis of nanometer-sized precipitates using advanced TEM. JFE Tech. Rep., 2007, 5(9): 5

[18]

Okamoto R, Borgenstam A, Agren J. Interphase precipitation in niobium-microalloyed steels. Acta Mater., 2010, 58(14): 4783.

[19]

Li P, Todd JA. Application of a new model to the interphase precipitation reaction in vanadium steels. Metall. Trans. A, 1988, 19(9): 2139.

[20]

Honeycombe RWK. Some aspects of micro-alloying. Trans. Jpn. Inst. Met., 1983, 24(4): 177

[21]

Ricks RA, Howell PR. The formation of discrete precipitate dispersions on mobile interphase boundaries in iron-base alloys. Acta Metall., 1983, 31(6): 853.

[22]

Honeycombe RWK, Mehl RF. Transformation from austenite in alloy steels. Metall. Trans. A, 1976, 7(7): 915.

[23]

Yen HW, Huang CY, Yang JR. Characterization of interphase-precipitated nanometer-sized carbides in a Ti-Mo-bearing steel. Scripta Mater., 2009, 61(6): 616.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/