PDF
Abstract
This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroless-deposited metals, such as Cu, Co, Ni, and Ag, and their alloys had many advantages in micro- and nanotechnologies. The structural, morphological, and optical properties of copper deposits were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. The structural data was further analyzed using the Rietveld refinement program. Structural studies reveal that the deposited copper prefers a (111) orientation. AFM studies suggest the deposited materials form compact, uniform, and nanocrystalline phases with a high tendency to self-organize. The data show that the particle size can be controlled by controlling the activator concentration. The absorption spectra of the as-deposited copper nanoparticles reveal that the plasmonic peak broadens and exhibits a blue shift with decreasing particle size.
Keywords
nanostructured materials
/
thin films
/
copper
/
electroless plating
/
deposition
Cite this article
Download citation ▾
Varsha R. Mehto, R. K. Pandey.
Activator-assisted electroless deposition of copper nanostructured films.
International Journal of Minerals, Metallurgy, and Materials, 2014, 21(2): 196-203 DOI:10.1007/s12613-014-0885-x
| [1] |
Lin J C, Lee C. Grain boundary diffusion of copper in tantalum nitride thin films. J. Electrochem. Soc., 1999, 146(9): 3466.
|
| [2] |
Vaškelis A. Coatings Technology Handbook, 2001, New York, Marcel Dekker, 213
|
| [3] |
Abe S, Ohkubo M, Fujinami T, Honma H. The electroless copper plating of small via holes. Trans. Inst. Met. Finish., 1998, 76, 12
|
| [4] |
O’Kelly J P, Mongey KF, Gobil Y, Torres J, Kelly PV, Crean GM. Room temperature electroless plating copper seed layer process for damascene interlevel metal structures. Microelectron. Eng., 2000, 50, 473.
|
| [5] |
Tang S C, Meng XK. Controllable synthesis of metal particles by a direct current electrochemical approach. Sci. China, Ser. E, 2009, 52(9): 2709.
|
| [6] |
Hafezi B, Majidi MR. A sensitive and fast electrochemical sensor based on copper nanostructures for nitrate determination in foodstuffs and mineral waters. Anal. Methods, 2013, 5, 3552.
|
| [7] |
Hollahan J R, Rosler RS. Thin Film Processes, 1978, New York, Academic Press, 335.
|
| [8] |
Dubin V M, Shacham-Diamand Y, Zhao B, Vasudev PK, Ting CH. Selective and blanket electroless copper deposition for ultralarge scale integration. J. Electrochem. Soc., 1997, 144(3): 898.
|
| [9] |
Valenzuela K, Raghavan S, Deymier PA, Hoying J. Formation of copper nanowires by electroless deposition using microtubules as templates. J. Nanosci. Nanotechnol., 2008, 8, 1.
|
| [10] |
Yan C L, Xue DF. A Modified electroless deposition route to dendritic Cu metal nanostructures. Cryst. Growth Des., 2008, 8(6): 1849.
|
| [11] |
Yu L, Guo L, Preisser R, Akolkar R. Autocatalysis during electroless copper deposition using glyoxylic acid as reducing agent. J. Electrochem. Soc., 2013, 160(12): D3004.
|
| [12] |
Bhusari D, Hayden H, Tanikella R, Allen SAB, Kohl PA. Plasma treatment and surface analysis of polyimide films for electroless copper buildup process. J. Electrochem. Soc., 2005, 152(10): F162.
|
| [13] |
Lee C L, Huang YC, Kuo LC. Catalytic effect of Pd nanoparticles on electroless copper deposition. J. Solid State Electrochem., 2007, 11(5): 639.
|
| [14] |
Byeon J H, Yoon KY, Jung YK, Hwang J. Thermophoretic deposition of palladium aerosol nanoparticles for electroless micropatterning of copper. Electrochem. Commun., 2008, 10, 1272.
|
| [15] |
Schlesinger M, Paunovic M. Modern Electroplating, 2010 5th ed. Hoboken, New Jersey, John Wiley & Sons, Inc.
|
| [16] |
Fritz N, Koo HC, Wilson Z, Uzunlar E, Wen ZS, Yeow XY, Allen SAB, Kohl PA. Electroless deposition of copper on organic and inorganic substrates using a Sn/Ag catalyst. J. Electrochem. Soc., 2012, 159(6): D386.
|
| [17] |
Sard R. The nucleation, growth, and structure of electroless copper deposits. J. Electrochem. Soc., 1970, 117(7): 864.
|
| [18] |
Bindra P, White JR. Electroless Plating: Fundamentals and Applications, 1990, New York, William Andrew Publishing, 289
|
| [19] |
Hsu H H, Teng CW, Lin SJ, Yeh JW. Sn/Pd catalyzation and electroless Cu deposition on TaN diffusion barrier layers. J. Electrochem. Soc., 2002, 149(3): C143.
|
| [20] |
Hsu H H, Hsieh CC, Chen MH, Lin SJ, Yeh JW. Displacement activation of tantalum diffusion barrier layer for electroless copper deposition. J. Electrochem. Soc., 2001, 148(9): C590.
|
| [21] |
Chang S Y, Hsu CJ, Fang RH, Lin SJ. Electrochemical deposition of nanoscaled palladium catalysts for 65 nm copper metallization. J. Electrochem. Soc., 2003, 150(9): C603.
|
| [22] |
Palanna O G. Engineering Chemistry, 2009, New Delhi, Tata McGraw Hill Publications, 191
|
| [23] |
Cullity B D, Stock SR. Elements of X-ray Diffraction, 1978, Menlo Park, California, Addison-Wesley Publishing Company, 102
|
| [24] |
Barret C S, Massalski TB. Structure of Metals, 1980, Oxford, Pergamon Press, 204
|
| [25] |
Kreibig U, Vollmer M. Optical Properties of Metal Clusters, 1995, Berlin, Springer, 184.
|
| [26] |
Yeshchenko O A, Dmitruk IM, Dmytruk AM, Alexeenko AA. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater. Sci. Eng., B, 2007, 137, 247.
|
| [27] |
Pileni M P. Optical properties of nanosized particles dispersed in colloidal solutions or arranged in 2D or 3D superlattices. New J. Chem., 1998, 22, 693.
|
| [28] |
Jana N R, Wang ZL, Sau T K, Pal T. Seed-mediated growth method to prepare cubic copper nanoparticles. Curr. Sci., 2000, 79(9): 1367
|
| [29] |
Wang D S, Kerker M. Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Phys. Rev. B, 1981, 24(4): 1777.
|
| [30] |
Blosi M, Albonetti S, Dondi M, Martelli C, Baldi G. Microwave-assisted polyol synthesis of Cu nanoparticles. J. Nanopart. Res., 2011, 13, 127.
|
| [31] |
Garcia M A. Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D, 2011, 44(28): 1.
|
| [32] |
Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem., 2000, 19(3): 409.
|