Activator-assisted electroless deposition of copper nanostructured films

Varsha R. Mehto , R. K. Pandey

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (2) : 196 -203.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (2) : 196 -203. DOI: 10.1007/s12613-014-0885-x
Article

Activator-assisted electroless deposition of copper nanostructured films

Author information +
History +
PDF

Abstract

This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroless-deposited metals, such as Cu, Co, Ni, and Ag, and their alloys had many advantages in micro- and nanotechnologies. The structural, morphological, and optical properties of copper deposits were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. The structural data was further analyzed using the Rietveld refinement program. Structural studies reveal that the deposited copper prefers a (111) orientation. AFM studies suggest the deposited materials form compact, uniform, and nanocrystalline phases with a high tendency to self-organize. The data show that the particle size can be controlled by controlling the activator concentration. The absorption spectra of the as-deposited copper nanoparticles reveal that the plasmonic peak broadens and exhibits a blue shift with decreasing particle size.

Keywords

nanostructured materials / thin films / copper / electroless plating / deposition

Cite this article

Download citation ▾
Varsha R. Mehto, R. K. Pandey. Activator-assisted electroless deposition of copper nanostructured films. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(2): 196-203 DOI:10.1007/s12613-014-0885-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lin J C, Lee C. Grain boundary diffusion of copper in tantalum nitride thin films. J. Electrochem. Soc., 1999, 146(9): 3466.

[2]

Vaškelis A. Coatings Technology Handbook, 2001, New York, Marcel Dekker, 213

[3]

Abe S, Ohkubo M, Fujinami T, Honma H. The electroless copper plating of small via holes. Trans. Inst. Met. Finish., 1998, 76, 12

[4]

O’Kelly J P, Mongey KF, Gobil Y, Torres J, Kelly PV, Crean GM. Room temperature electroless plating copper seed layer process for damascene interlevel metal structures. Microelectron. Eng., 2000, 50, 473.

[5]

Tang S C, Meng XK. Controllable synthesis of metal particles by a direct current electrochemical approach. Sci. China, Ser. E, 2009, 52(9): 2709.

[6]

Hafezi B, Majidi MR. A sensitive and fast electrochemical sensor based on copper nanostructures for nitrate determination in foodstuffs and mineral waters. Anal. Methods, 2013, 5, 3552.

[7]

Hollahan J R, Rosler RS. Thin Film Processes, 1978, New York, Academic Press, 335.

[8]

Dubin V M, Shacham-Diamand Y, Zhao B, Vasudev PK, Ting CH. Selective and blanket electroless copper deposition for ultralarge scale integration. J. Electrochem. Soc., 1997, 144(3): 898.

[9]

Valenzuela K, Raghavan S, Deymier PA, Hoying J. Formation of copper nanowires by electroless deposition using microtubules as templates. J. Nanosci. Nanotechnol., 2008, 8, 1.

[10]

Yan C L, Xue DF. A Modified electroless deposition route to dendritic Cu metal nanostructures. Cryst. Growth Des., 2008, 8(6): 1849.

[11]

Yu L, Guo L, Preisser R, Akolkar R. Autocatalysis during electroless copper deposition using glyoxylic acid as reducing agent. J. Electrochem. Soc., 2013, 160(12): D3004.

[12]

Bhusari D, Hayden H, Tanikella R, Allen SAB, Kohl PA. Plasma treatment and surface analysis of polyimide films for electroless copper buildup process. J. Electrochem. Soc., 2005, 152(10): F162.

[13]

Lee C L, Huang YC, Kuo LC. Catalytic effect of Pd nanoparticles on electroless copper deposition. J. Solid State Electrochem., 2007, 11(5): 639.

[14]

Byeon J H, Yoon KY, Jung YK, Hwang J. Thermophoretic deposition of palladium aerosol nanoparticles for electroless micropatterning of copper. Electrochem. Commun., 2008, 10, 1272.

[15]

Schlesinger M, Paunovic M. Modern Electroplating, 2010 5th ed. Hoboken, New Jersey, John Wiley & Sons, Inc.

[16]

Fritz N, Koo HC, Wilson Z, Uzunlar E, Wen ZS, Yeow XY, Allen SAB, Kohl PA. Electroless deposition of copper on organic and inorganic substrates using a Sn/Ag catalyst. J. Electrochem. Soc., 2012, 159(6): D386.

[17]

Sard R. The nucleation, growth, and structure of electroless copper deposits. J. Electrochem. Soc., 1970, 117(7): 864.

[18]

Bindra P, White JR. Electroless Plating: Fundamentals and Applications, 1990, New York, William Andrew Publishing, 289

[19]

Hsu H H, Teng CW, Lin SJ, Yeh JW. Sn/Pd catalyzation and electroless Cu deposition on TaN diffusion barrier layers. J. Electrochem. Soc., 2002, 149(3): C143.

[20]

Hsu H H, Hsieh CC, Chen MH, Lin SJ, Yeh JW. Displacement activation of tantalum diffusion barrier layer for electroless copper deposition. J. Electrochem. Soc., 2001, 148(9): C590.

[21]

Chang S Y, Hsu CJ, Fang RH, Lin SJ. Electrochemical deposition of nanoscaled palladium catalysts for 65 nm copper metallization. J. Electrochem. Soc., 2003, 150(9): C603.

[22]

Palanna O G. Engineering Chemistry, 2009, New Delhi, Tata McGraw Hill Publications, 191

[23]

Cullity B D, Stock SR. Elements of X-ray Diffraction, 1978, Menlo Park, California, Addison-Wesley Publishing Company, 102

[24]

Barret C S, Massalski TB. Structure of Metals, 1980, Oxford, Pergamon Press, 204

[25]

Kreibig U, Vollmer M. Optical Properties of Metal Clusters, 1995, Berlin, Springer, 184.

[26]

Yeshchenko O A, Dmitruk IM, Dmytruk AM, Alexeenko AA. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater. Sci. Eng., B, 2007, 137, 247.

[27]

Pileni M P. Optical properties of nanosized particles dispersed in colloidal solutions or arranged in 2D or 3D superlattices. New J. Chem., 1998, 22, 693.

[28]

Jana N R, Wang ZL, Sau T K, Pal T. Seed-mediated growth method to prepare cubic copper nanoparticles. Curr. Sci., 2000, 79(9): 1367

[29]

Wang D S, Kerker M. Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Phys. Rev. B, 1981, 24(4): 1777.

[30]

Blosi M, Albonetti S, Dondi M, Martelli C, Baldi G. Microwave-assisted polyol synthesis of Cu nanoparticles. J. Nanopart. Res., 2011, 13, 127.

[31]

Garcia M A. Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D, 2011, 44(28): 1.

[32]

Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem., 2000, 19(3): 409.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/