Effects of Sr2+ substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics

Arvind Kumar , S. K. Mishra

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (2) : 175 -180.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (2) : 175 -180. DOI: 10.1007/s12613-014-0882-0
Article

Effects of Sr2+ substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics

Author information +
History +
PDF

Abstract

This study described the structural, dielectric, and piezoelectric behavior of Pb1−xSr x[(Zr0.52Ti0.48)0.95(Mn1/3Nb2/3)0.05]O3 ceramics (PSZT-PMN, x = 0, 0.025, 0.050, and 0.075), prepared by a semi-wet route. X-ray diffraction, dielectric, and piezoelectric investigations were carried out to analyze the crystal structure. The relative dielectric constant and dielectric loss were both calculated as the functions of temperature. The room-temperature dielectric constant reaches a maximum for a Sr2+-modified PZT-PMN ceramic with an x value of 0.050, which corresponds to the morphotropic phase boundary (MPB). Raman spectroscopy studies also confirm the existence of this MPB for x = 0.050. The piezoelectric strain coefficients (d 33) value shows a maximum response for this composition. In addition, the phase transition temperature decreases significantly when the Sr2+ concentration increases in the PZT-PMN ceramics.

Keywords

ceramic materials / strontium / substitution / structural properties / dielectric properties / piezoelectricity

Cite this article

Download citation ▾
Arvind Kumar, S. K. Mishra. Effects of Sr2+ substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(2): 175-180 DOI:10.1007/s12613-014-0882-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Setter N. Electro-ceramics: looking ahead. J. Eur. Ceram. Soc., 2001, 21, 1279.

[2]

Schwartz R W, Ballato J, Haertling GH. Piezoelectric and Electro-optic Ceramics, 2004, New York, Marcel Dekker, 139

[3]

Ranjan R R, Mishra SK, Pandey D. Room temperature structure of Pb(ZrxTi1−x)O3 around the morphotropic phase boundary region: a Rietveld study. J. Appl. Phys., 2002, 92(6): 3266.

[4]

Hiremath B V, Kingon AI, Biggers JV. Reaction sequence in the formation of lead zirconate-lead titanate solid solution: role of raw materials. J. Am. Ceram. Soc., 1983, 66(11): 790.

[5]

Dalakoti A, Bandyopadhyay A, Bose S. Effect of Zn, Sr, and Y addition on electrical properties of PZT thin films. J. Am. Ceram. Soc., 2006, 89, 1140.

[6]

Ramam K, Lopez M. Ferroelectric and piezoelectric properties of Ba modified lead zirconium titanate ceramics. J. Phys. D, 2006, 39, 4466.

[7]

Ryu J, Choi JJ, Kim HE. Effect of heating rate on the sintering behavior and the piezoelectric properties of lead zirconate titanate ceramics. J. Am. Ceram. Soc., 2001, 84(4): 902.

[8]

Priya S, Ryu J, Uchino K, Ahn C, Nahm S. Induction of combinatory characteristics by relaxor modification of Pb(Zr0.5Ti0.5)O3. Appl. Phys. Lett., 2003, 83(24): 5020.

[9]

Zhu Z G, Zeng NZ, Li GR, Yin QR. Dielectric and electrical conductivity properties of PMS-PZT ceramics. J. Am. Ceram. Soc., 2006, 89, 717.

[10]

Kalem V, Timucin M. Structural, piezoelectric and dielectric properties of PSLZT-PMnN ceramics. J. Eur. Ceram. Soc., 2013, 33(1): 105.

[11]

Prabu M, Banu IB S, Gobalakrishnan S, Chavali M. Electrical and ferroelectric properties of un-doped and La-doped PZT (52/48) electro-ceramics synthesized by sol-gel method. J. Alloys Compd., 2013, 551, 200.

[12]

Tsai C C, Hong CS, Shih CC, Chu SY. Electrical properties and temperature behavior of ZnO-doped PZT-PMnN modified piezoelectric ceramics and their applications on therapeutic transducers. J. Alloys Compd., 2012, 511(1): 54.

[13]

Zhao L, Zhang BP, Cui M, Li Y. Effect of KNbO3 content on the crystal structure and electrical properties of (1−x)PbZr0.54Ti0.46O3-xKNbO3 piezoelectric ceramics. Int. J. Miner. Metall. Mater., 2013, 20(3): 279.

[14]

Kumar B, Himanshu AK, Sharma H, Kumari K, Ranjan R, Bandhopadhyay SK, Sinha TP. Structural, dielectric relaxation and piezoelectric characterization of Sr2+ substituted modified PMS-PZT ceramic. Phys. B, 2012, 407, 635.

[15]

Singh A P, Mishra SK, Pandey D, Prasad CD, Lal R. Low-temperature synthesis of chemically homogeneous lead zirconate titanate (PZT) powders by a semi-wet method. J. Mater. Sci., 1993, 28(18): 5050.

[16]

Ramam K, Chandramouli K. Dielectric and piezoelectric properties of combinatory effect of A-site isovalent and B-site acceptor doped PLZT ceramics. Ceram. Silikaty, 2009, 53, 189

[17]

Xia Z G, Li Q. Structural phase transition behavior and electrical properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics. J. Phys. D, 2007, 40(24): 7826.

[18]

Parija B, Badapanda T, Panigrahi S, Sinha TP. Ferroelectric and piezoelectric properties of (1−x) (Bi0.5Na0.5)TiO3-xBaTiO3 ceramics. J. Mater. Sci. Mater. Electron., 2013, 24(1): 402.

[19]

Badapanda T, Senthil V, Rout SK, Cavalcante LS, Simões AZ, Sinha TP, Panigrahi S, de Jesus MM, Longo E, Varela JA. Rietveld refinement, microstructure, conductivity and impedance properties of Ba[Zr0.25Ti0.75]O3 ceramic. Curr. Appl. Phys., 2011, 11, 1282.

[20]

Souza Filho A. G., Lima K.C.V., Ayala A.P., Guedes I., Freire P.T.C., Melo F.E.A., Mendes Filho J., Araújo E.B., Eiras J.A. Raman scattering study of the PbZr1−x TixO3 system: Rhombohedral-monoclinic-tetragonal phase transitions. Phys. Rev. B, 2002, 66, 1321071

[21]

Frantti J, Lantto V, Nishio S, Kakihana M. Effect of A- and B-cation substitutions on the phase stability of PbTiO3 ceramics. Phys. Rev. B, 1999, 59, 12.

[22]

Zhu M K, Lu PX, Hou YD, Song XM, Wang H, Yan H. Analysis of phase coexistence in Fe2O3-doped 0.2PZN-0.8PZT ferroelectric ceramics by Raman scattering spectra. J. Am. Ceram. Soc., 2006, 89(12): 3739.

[23]

Noheda B, Cox DE. Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions, 2006, 79(1–2): 5.

[24]

Burns G, Sanjurjo JA, López-Cruz E. High-pressure Raman study of two ferroelectric crystals closely related to PbTiO3. Phys. Rev. B, 1984, 30(12): 7170.

[25]

Sanjurjo J A, López-Cruz E, Burns G. Pressure dependence of the line width of the soft phonons in PbTiO3. Solid State Commun., 1983, 48(3): 221.

[26]

Perry C H, Hall DB. Temperature dependence of the Raman spectrum of BaTiO3. Phys. Rev. Lett., 1965, 15(17): 700.

[27]

Li L M, Jiang YJ, Zeng LZ. Temperature dependence of Raman spectra in BaTiO3. J. Raman Spectrosc., 1996, 27(7): 503.

[28]

Burns G, Scott BA. Lattice modes in ferroelectric perovskite: PbTiO3. Phys. Rev. B, 1973, 7, 3088.

[29]

Burns G, Scott BA. Raman spectra of polycrystalline solids: application to the PbTi1−xZrxO3 system. Phys. Rev. Lett., 1970, 25(17): 1191.

[30]

Ikeuchi Y, Kojima S, Yamamoto T. Raman scattering study of cubic to tetragonal phase transitions of Ti-rich Pb(ZrxTi1−x)O3. J. Appl. Phys., 1997, 36, 2985.

[31]

El Marssi M, Farhi R, Dai X, Morell A, Viehland D. A Raman scattering study of the ferroelectric ordering in rhombohedral and tetragonal La-modified lead zirconate ti tanate ceramics. J. Appl. Phys., 1996, 80(2): 1079.

[32]

Fan H Q, Jie WQ, Tian CS, Zhang LT, Kim HE. Domain morphology and field-induced phase transition in ‘two phase zone’ of PZN-based ferroelectrics. Ferroelectrics, 2002, 269(1): 33

[33]

Glazer A M, Thomas PA, Baba-Kishi KZ, Pang GKH, Tai CW. Influence of short-range and long-range order on the evolution of the morphotropic phase boundary in Pb(Zr1−xTix)O3. Phys. Rev. B, 2004, 70(18): 184123.

[34]

Loudon R. The Raman effect in crystals. Adv. Phys., 2001, 13(52): 423.

[35]

Zhang H X, Uusimaki A, Leppavuori S, Karjalainen P. Phase transition revealed by Raman spectroscopy in screen-printed lead zirconate titanate thick films. J. Appl. Phys., 1994, 76(7): 4294.

[36]

Bauerle D, Pinczuk A. Low frequency vibrational modes and the phase transitions of rhombohedral PbTi1−xZrxO3. Solid State Commun., 1976, 19, 1169.

[37]

Frantti J, Lantto V. Structural studies of Nd-modified lead zirconate titanate ceramics between 11 and 680 K at the morphotropic phase boundary. Phys. Rev. B, 1997, 56(1): 221.

[38]

Filho A G S, Freire PTC, Sasaki JM, Guedes I, Filho J M, Melo FEA, Araújo EB, Eiras JA. A Raman investigation of PbZr0.94Ti0.06O3 ceramics under high-pressure. Solid State Commun., 1999, 112(7): 383.

[39]

Foster C M, Li Z, Grimsditch M, Chan SK, Lam DJ. Anharmonicity of the lowest-frequency A 1(TO) phonon in PbTiO3. Phys. Rev. B, 1993, 48(14): 10160.

[40]

Sen S, Choudhary RNP. Phase transition in Sr modified Pb(SnTi)O3 system. J. Alloys Compd., 2008, 457(1–2): 417.

[41]

Miga S, Wójcik K. Investigation of the diffuse phase transition in PLZT X/65/35 ceramics, X = 7–10. Ferroelectrics., 1989, 100(1): 167.

[42]

Noheda B., Cox D.E., Shirane G., Guo R., Jones B., Cross L.E. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1−x TixO3. Phys. Rev. B, 2000, 63, 014103

[43]

Noheda B., Cox D.E., Shirane G., Gao J., Ye Z.G. Phase diagram of the ferroelectric relaxor (1−x)PbMg1/3Nb2/3O3−x PbTiO3. Phys. Rev. B, 2002, 66, 054104

[44]

Takenaka T, Maruyama KI, Sakata K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys., 1991, 30(1): 2236.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/