Influence of intermediate annealing on the microstructure and texture of Ni-9.3at%W substrates

Jia-nan Liu , Wei Liu , Guo-yi Tang , Ru-fei Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (2) : 162 -168.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (2) : 162 -168. DOI: 10.1007/s12613-014-0880-2
Article

Influence of intermediate annealing on the microstructure and texture of Ni-9.3at%W substrates

Author information +
History +
PDF

Abstract

The effects of intermediate annealing (IA) on the microstructure and texture of Ni-9.3at%W substrates have been investigated by using electron backscattering diffraction and X-ray diffraction. Results suggest that IA can optimize the homogeneity of deformation microstructure. Higher IA temperatures (without undergoing recrystallization during IA) will increase the copper-type components of deformation texture and improve the content of cube texture after recrystallization. Sharp cube texture (97.2%) can be obtained at the optimum IA temperature of 650°C. The mechanism underlying the transition of deformation texture can be interpreted as that IA increases the dislocation slipping ability and suppresses the twinning deformation of Copper orientation in the subsequent rolling process. The observed strengthening of cube texture as a result of IA treatment is presumably attributed to the reduction of noncube nucleation and the optimization of preferential growth surrounding the cube nuclei.

Keywords

nickel tungsten alloys / annealing / textures / rolling

Cite this article

Download citation ▾
Jia-nan Liu, Wei Liu, Guo-yi Tang, Ru-fei Zhu. Influence of intermediate annealing on the microstructure and texture of Ni-9.3at%W substrates. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(2): 162-168 DOI:10.1007/s12613-014-0880-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ijaduola AO, Thompson JR, Goyal A, Thieme CLH, Marken K. Magnetism and ferromagnetic loss in Ni-W textured substrates for coated conductors. Phys. C, 2004, 403(3): 163.

[2]

Eickemeyer J, Selbmann D, Opitz R, Boer B d, Holzapfel B, Schultz L, Miller U. Nickel-refractory metal substrate tapes with high cube texture stability. Supercond. Sci. Technol., 2001, 14(3): 152.

[3]

Eickemeyer J, Selbmann D, Opitz R, Wendrock H, Maher E, Miller U, Prusseit W. Highly cube textured Ni-W-RABiTS tapes for YBCO coated conductors. Phys. C, 2002, 372–376, 814.

[4]

Zaefferer S, Baudin T, Penelle R. A study on the formation mechanisms of the cube recrystallization texture in cold rolled Fe-36% Ni alloys. Acta Mater., 2001, 49(6): 1105.

[5]

Sarma VS, Eickemeyer J, Mickel C, Schultz L, Holzapfel B. On the cold rolling textures in some fcc Ni-W alloys. Mater. Sci. Eng. A, 2004, 380(1–2): 30.

[6]

Zhao Y, Suo HL, Zhu YH, Grivel JC, Gao M, Ma L, Fan RF, Liu M, Ji Y, Zhou ML. Study on the formation of cubic texture in Ni-7at.% W alloy substrates by powder metallurgy routes. Acta Mater., 2009, 57(3): 773.

[7]

Yu H, Liu W. Effect of temperature on microstructure and texture of rolled Ni-9.3 at-%W alloy. Mater. Sci. Technol., 2011, 27(9): 1412.

[8]

Subramanya Sarma V, Eickemeyer J, Schultz L, Holzapfel B. Recrystallisation texture and magnetisation behaviour of some FCC Ni-W alloys. Scripta Mater., 2004, 50(7): 953.

[9]

Supercond. Sci. Technol., 2008, 21(10art.105012)

[10]

Supercond. Sci. Technol., 2010, 23(8)

[11]

Gao MM, Suo HL, Grivel JC, Zhao Y, Gao PK, Liu M, Ma L. Fabrication of the textured Ni-9.3 at.% W alloy substrate for coated conductors. IEEE Trans. Appl. Supercond., 2011, 21(3): 2969.

[12]

Hielscher R, Schaeben H. A novel pole figure inversion method: specification of the MTEX algorithm. J. Appl. Crystallogr., 2008, 41(6): 1024.

[13]

Chen ZW, Zhao J, Li SS. Texture evolution of Al-Mg-Li aeronautical alloys in in-situ tension. Int. J. Miner. Metall. Mater., 2012, 19(12): 1100.

[14]

Hirsch J, Lücke K, Hatherly M. Overview No. 76: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals-III. The influence of slip inhomogeneities and twinning. Acta Metall., 1988, 36(11): 2905.

[15]

Mao WM, Zhang XM. Quantitative Texture Analysis of Crystalline Materials, 1995, Beijing, Metallurgical Industry Press, 96

[16]

Bhattacharjee PP, Ray RK, Tsuji N. Cold rolling and recrystallization textures of a Ni-5at.% W alloy. Acta Mater., 2009, 57(7): 2166.

[17]

Duggan BJ, Hatherly M, Hutchinson WB, Wakefield PT. Deformation structures and textures in cold-rolled 70:30 brass. Met. Sci., 1978, 12(8): 343.

[18]

Ridha AA, Hutchinson WB. Recrystallisation mechanisms and the origin of cube texture in copper. Acta Metall., 1982, 30(10): 1929.

[19]

Li XL, Liu W, Godfrey A, Jensen D J, Liu Q. Development of the cube texture at low annealing temperatures in highly rolled pure nickel. Acta Mater., 2007, 55(10): 3531.

[20]

Beck PA, Sperry PR, Hu H. The orientation dependence of the rate of grain boundary migration. J. Appl. Phys., 1950, 21(5): 420.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/