Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

Ze Liu , Ning-ning Shao , Dong-min Wang , Jun-feng Qin , Tian-yong Huang , Wei Song , Mu-xi Lin , Jin-sha Yuan , Zhen Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (1) : 89 -94.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (1) : 89 -94. DOI: 10.1007/s12613-014-0870-4
Article

Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

Author information +
History +
PDF

Abstract

In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabricated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

Keywords

fly ash / geopolymers / foamed products / microstructure / hydrogen peroxide

Cite this article

Download citation ▾
Ze Liu, Ning-ning Shao, Dong-min Wang, Jun-feng Qin, Tian-yong Huang, Wei Song, Mu-xi Lin, Jin-sha Yuan, Zhen Wang. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(1): 89-94 DOI:10.1007/s12613-014-0870-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davidovits J. Geopolymer Chemistry and Applications, 2008, Saint-Quentin, Institut Géopolymère, 592

[2]

Xu H. Geopolymerisation of Alumino-Silicate Minerals, 2002, Melbourne, The University of Melbourne, 297

[3]

Sun P. Fly Ash Based Inorganic Polymeric Building Material, 2005, Detroit, Wayne State University, 216

[4]

Lyon RE, Balaguru PN, Foden A, Sorathia U, Davidovits J, Davidovics M. Fire-resistant aluminosilicate composites. Fire Mater., 1997, 21, 67.

[5]

Kong DLY, Sanjayan JG, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res., 2007, 37, 1583.

[6]

Xu H, van Deventer JSJ. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process., 2000, 59, 247.

[7]

Xu H, van Deventer JSJ. Geopolymerisation of multiple minerals. Miner. Eng., 2002, 15, 1131.

[8]

Xu H, van Deventer JSJ. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids Surf. A, 2003, 216, 27.

[9]

Duxson P, Lukey GC, van Deventer SJ. Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity. Ind. Eng. Chem. Res., 2006, 45(23): 7781.

[10]

Hu M, Zhu X, Long F. Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives. Cem. Concr. Compos., 2009, 31, 762.

[11]

Chindaprasirt P, Jaturapitakkul C, Chalee W, Rattanasak U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manage., 2009, 29, 539.

[12]

Oh JE, Monteiro PJM, Jun SS, Choi S, Clark SM. The evolution of strength and crystalline phases for alkaliactivated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res., 2010, 40, 189.

[13]

Sukmak P, Horpibulsuk S, Shen SL. Strength development in clay-fly ash geopolymer. Constr. Build. Mater., 2013, 40, 566.

[14]

Rickard WDA, Williams R, Temuujin J, Riessen AV. Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Mater. Sci. Eng. A, 2011, 528, 3390.

[15]

Zhao YL, Ye JW, Lu XB, Liu MG, Lin Y, Gong WT, Ning GL. Preparation of sintered foam materials by alkaliactivated coal fly ash. J. Hazard. Mater., 2010, 174, 108.

[16]

Rickard WDA, Vickers L, van Riessen A. Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions. Appl. Clay Sci., 2013, 73, 71.

[17]

Prud’homme E, Michaud P, Joussein E, Clacens JM, Rossignol S. Role of alkaline cations and water content on geomaterial foams: monitoring during formation. J. Non Cryst. Solids, 2011, 357, 1270.

[18]

Bell JL, Kriven WM. Preparation of ceramic foams from metakaolin-based geopolymer gels. Ceram. Eng. Sci. Proc., 2009, 29(10): 97

[19]

Álvarez-Ayuso E, Querol X, Plana F, Alastuey A, Moreno N, Izquierdo M, Font O, Moreno T, Diez S, Vazquez E, Barra M. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J. Hazard. Mater., 2008, 154, 175.

[20]

Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res., 2005, 35, 1224.

[21]

Criado M, Fernández-Jiménez A, de la Torre AG, Aranda MAG, Palomo A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res., 2007, 37, 671.

[22]

Fang Y, Kayali O. The fate of water in fly ash-based geopolymers. Constr. Build. Mater., 2013, 39, 89.

[23]

Li Q, Xu H, Li FH, Li PM, Shen LF, Zhai JP. Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel, 2012, 97, 366.

[24]

Chindaprasirt P, Rattanasak U. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. Waste Manage., 2010, 30, 667.

[25]

Provis JL, Duxson P, Deventer JSJ v, Lukey GC. The role of mathematical modelling and gel chemistry in advancing geopolymer technology. Chem. Eng. Res. Des., 2005, 83(7): 853.

[26]

van Jaarsveld JGS, van Deventer JSJ, Lukey GC. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem. Eng. J., 2002, 89, 63.

[27]

Komnitsas K, Zaharaki D. Geopolymerisation: a review and prospects for the minerals industry. Miner. Eng., 2007, 20, 1261.

[28]

Provis JL, van Deventer JSJ. Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry. J. Mater. Sci., 2007, 42(9): 2974.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/