Structural characteristics, dispersion, and modification of fibrous brucite

Xi Cao , Xiu-yun Chuan

International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (1) : 82 -88.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2014, Vol. 21 ›› Issue (1) : 82 -88. DOI: 10.1007/s12613-014-0869-x
Article

Structural characteristics, dispersion, and modification of fibrous brucite

Author information +
History +
PDF

Abstract

Fibrous brucite has very unique structure and physical properties. Brucite fibers were exfoliated into single nanofibers by using dioctyl sodium sulfosuccinate (AOT) as a dispersant through mechanical agitation and ultrasonic dispersion; and then, the nanofibers were modified by stearic acid and (3-aminopropyl)triethoxysilane (γ-APS) compound modification agent. The nanofibers were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis. It is found that AOT has good effect on the dispersion. The single fiber has a consistent morphology, and fibrous brucite is dispersed and modified without destroying the crystal structure. Infrared and thermal analysis shows that the surface modification of fibrous brucite is achieved by forming chemical bonds between the coupling agent and magnesium hydroxide.

Keywords

fibrous brucite / dispersion / nanofibers / surface treatment / modification

Cite this article

Download citation ▾
Xi Cao, Xiu-yun Chuan. Structural characteristics, dispersion, and modification of fibrous brucite. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(1): 82-88 DOI:10.1007/s12613-014-0869-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pan ZL. Crystallography and Mineralogy, 1993, Beijing, Geological Publishing House, 92

[2]

Simandl GJ, Paradis S, Irvine M. Brucite-industrial mineral with a future. Geosci. Can., 2007, 34(2): 57

[3]

Dong FQ, Pan ZL. A study on the physical properties of brucite fibers produced in south Shaanxi. J. Southwest Coll. Technol., 1995, 10(4): 6

[4]

Liu KP, Cheng HW, Zhou JE. Investigation of brucite-fiber-reinforced concrete. Cem. Concr. Res., 2004, 34(11): 1981.

[5]

Zhao XF, Li KP. Study on flame retardant corrugated medium with fibrous brucite. Heilongjiang Pulp Paper, 2004, 3, 3

[6]

Dong FQ, Zhang BS, Wang WQ, Wang GH, Zheng K. Study on composite performances of natural fibrous brucite flame retardant. Non Met. Mines, 2009, 32(6): 33

[7]

Yang HM, Xiao Y, Liu K, Yang YX, Feng QM. Physicochemical dispersion of chrysotile. Colloids Surf. A, 2007, 301(1–3): 341.

[8]

Xu L, Ni W, Li WP, Liu XD, Yang HL, Yang XG. Preparation of natural brucite nanofibers by the dispersion method. J. Univ. Sci. Technol. Beijing, 2008, 15(4): 489.

[9]

Hornsby PR, Mthupha A. Analysis of fire retardancy in magnesium hydroxide filled polypropylene composites. Plast. Rubber Compos. Process. Appl., 1996, 25(7): 347

[10]

Osman MA, Atallah A, Suter UW. Influence of excessive filler coating on the tensile properties of LDPE-calcium carbonate composites. Polymer, 2004, 45(4): 1177.

[11]

Wang J, Zheng SL. Effect of dry surface modification on inorganic flame retardant-EVA composite materials. China Powder Sci. Technol., 2012, 18(1): 48.

[12]

Angloher S, Kecht J, Bein T. Metal-organic modification of periodic mesoporous silica: multiply bonded systems. Chem. Mater., 2007, 19(23): 5797.

[13]

Salehi-Mobarakeh H, Yadegari A, Khakzad-Esfahlan F, Mahdavian A. Modifying montmorillonite clay via silane grafting and interfacial polycondensation for melt compounding of nylon-66 nanocomposite. J. Appl. Polym. Sci., 2012, 124(2): 1501.

[14]

Frost RL, Mendelovici E. Modification of fibrous silicates surfaces with organic derivatives: an infrared spectroscopic study. J. Colloid Interf. Sci., 2006, 294(1): 47.

[15]

Oh S, Kang T, Kim H, Moon J, Hong S, Yi J. Preparation of novel ceramic membranes modified by mesoporous silica with 3-Aminopropyltriethoxysilane (APTES) and its application to Cu2+ separation in the aqueous phase. J. Membr. Sci., 2007 118

[16]

Park AY, Kwon H, Woo AJ, Kim SJ. Layered double hydroxide surface modified with (3-aminopropyl)triethoxysilane by covalent bonding. Adv. Mater., 2005, 17(1): 106.

[17]

Thongpin C, Juntum J, Sa-Nguan-Moo R, Suksa-Ard A, Sombatsompop N. Thermal stability of PVC with γ-APS-g-MMT and zeolite stabilizers by TGA technique. J. Thermoplast. Compos. Mater., 2010, 23(4): 435.

[18]

Papirer E, Schultz J, Turchi C. Surface properties of a calcium carbonate filler treated with stearic acid. Eur. Polym. J., 1984, 20(12): 1155.

[19]

Huang HH, Tian M, Yang J, Li HX, Liang WL, Zhang LQ, Li XL. Stearic acid surface modifying Mg(OH)2: mechanism and its effect on properties of ethylene vinyl acetate/Mg(OH)2 composites. J. Appl. Polym. Sci., 2008, 107(5): 3325.

[20]

Hornsby PR, Watson CL. Interfacial modification of polypropylene composites filled with magnesium hydroxide. J. Mater. Sci., 1995, 30(21): 5347.

[21]

Horváth E, Kristóf J, Frost RL. Vibrational spectroscopy of intercalated kaolinites: Part I. Appl. Spectrosc. Rev., 2010, 45(2): 130.

[22]

Mellouk S, Cherifi S, Sassi M, Kheira MK, Bengueddach A, Schott J, Khelifa A. Intercalation of halloysite from Djebel Debagh (Algeria) and adsorption of copper ions. Appl. Clay Sci., 2009, 44(3–4): 230.

[23]

Deng Y, White GN, Dixon JB. Effect of structural stress on the intercalation rate of kaolinite. J. Colloid Interf. Sci., 2002, 250(2): 379.

[24]

Frost RL, Kristof J, Tran TH. Kinetics of deintercalation of potassium acetate from kaolinite-a Raman spectroscopic study. Clay Miner., 1998, 33(4): 605

[25]

Gadsden JA. Infrared Spectra of Minerals and Related Inorganic Compounds, 1975, London, Butterworths, 55

[26]

van der Marel HW, Beutelspacher H. Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures, 1976, Amsterdam, Elsevier, 224

[27]

Frost RL. Hydroxyl deformation in kaolins. Clays Clay Miner., 1998, 46(3): 280.

[28]

Suárez M, García-Romero E. FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Appl. Clay Sci., 2006, 31(1–2): 154.

[29]

Weber JN, Roy R. Complex stable-metastable solid reactions illustrated with the Mg(OH)2-MgO reaction. Am. J. Sci., 1965, 263(8): 668.

[30]

MacKenzie KJD, Meinhold RH. Thermal decomposition of brucite, Mg(OH)2: a 25Mg MAS NMR study. Thermochim. Acta, 1993, 230, 339.

[31]

L’vov BV, Novichikhin AV, Dyakov AO. Mechanism of thermal decomposition of magnesium hydroxide. Thermochim. Acta, 1998, 315(2): 135.

[32]

Zhai XL. The study of the thermal decomposition mechanism of Mg(OH)2. Multipurpose Util. Miner. Resour., 2000 11

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/