Solute atom migration in GH4169 superalloy under electrostatic fields

Yao Wang , Lei Wang , Yang Liu , Xiu Song , Bei-jiang Zhang , Jin-hui Du

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (12) : 1176 -1182.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (12) : 1176 -1182. DOI: 10.1007/s12613-013-0852-y
Article

Solute atom migration in GH4169 superalloy under electrostatic fields

Author information +
History +
PDF

Abstract

Electric field treatment (EFT) was applied on GH4169 alloy during aging at 500–800°C to investigate the microstructure and property variation of the alloy under the action of EFT. The results demonstrate that the short-distance diffusion of Al, Ti, and Nb atoms can be accelerated by EFT, which results in the coarsening of γ′ and γ″ phases. Meanwhile, lattice distortion can be caused by the segregation of Fe and Cr atoms, owing to the vacancy flows migrating toward the charged surfaces of the alloy. Therefore, the alloy is hardened by the application of EFT, even if the strength of the alloy is partly reduced, which is caused by precipitation coarsening.

Keywords

superalloys / nickel alloys / electric fields / aging / precipitation / vacancies

Cite this article

Download citation ▾
Yao Wang, Lei Wang, Yang Liu, Xiu Song, Bei-jiang Zhang, Jin-hui Du. Solute atom migration in GH4169 superalloy under electrostatic fields. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(12): 1176-1182 DOI:10.1007/s12613-013-0852-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sundararaman M, Mukhopadhyay P, Banerjee S. Precipitation of the δ-Ni3Nb phase in two nickel base superalloys. Metall. Trans. A, 1988, 19(3): 453.

[2]

Chaturvedi MC, Han YF. Strengthening mechanisms in Inconel 718 superalloy. Mater. Sci., 1983, 17(3): 145

[3]

Sun GQ, Shang DG, Bao M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials. Int. J. Fatigue, 2010, 32(7): 1108.

[4]

Sundararaman M, Mukhopadhyay P, Banerjee S. Deformation behaviour of γ′ strengthened inconel 718. Acta Metall., 1988, 36(4): 847.

[5]

Zhang N, Wang BY, Lin JG. Effect of cross wedge rolling on the microstructure of GH4169 alloy. Int. J. Miner. Metall. Mater., 2012, 19(9): 836.

[6]

Devaux A, Nazé L, Molins R, Pineau A, Organista A, Guédou JY, Uginet JF, Héritier P. Gamma double prime precipitation kinetic in Alloy 718. Mater. Sci. Eng. A, 2008, 486(1–2): 117.

[7]

Lu XD, Du JH, Deng Q. High temperature structure stability of GH4169 superalloy. Mater. Sci. Eng. A, 2013, 559, 623.

[8]

Bi ZN, Dong JX, Zhang MC, Zheng L, Xie XS. Mechanism of α-Cr precipitation and crystallographic relationships between α-Cr and δ phases in Inconel 718 alloy after long-time thermal exposure. Int. J. Miner. Metall. Mater., 2010, 17(3): 312.

[9]

Fu SH, Dong JX, Zhang MC, Xie XS. Alloy design and development of INCONEL718 type alloy. Mater. Sci. Eng. A, 2009, 499(1–2): 215.

[10]

Sivaprasad K, Raman SGS, Mastanaiah P, Reddy GM. Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments. Mater. Sci. Eng. A, 2006, 428(1–2): 327.

[11]

Hummel RE, Breitling RM. On the direction of electromigration in thin silver, gold, and copper films. Appl. Phys. Lett., 1971, 18(9): 373.

[12]

Pei CH, Fan QB, Cai HN, Li JC. High temperature deformation behavior of the TC6 titanium alloy under the uniform DC electric field. J. Alloys Compd., 2010, 489(2): 401.

[13]

Zhang JJ, Chen Z, Wang YX, Liu B. Gibbs free energy calculation of Al-Cu-Li alloy with the effect of electric field from electron level. J. Alloys Compd., 2008, 457(1–2): 526.

[14]

Baranov YV. Effect of electrostatic fields on mechanical characteristics and structure of metals and alloys. Mater. Sci. Eng. A, 2000, 287(2): 288.

[15]

Conrad H, Yang D. Effect of DC electric field on the tensile deformation of ultrafine-grained 3Y-TZP at 1450–1600°C. Acta Mater., 2007, 55(20): 6789.

[16]

Conrad H, Guo Z, Sprecher AF. Effect of an electric field on the recovery and recrystallization of Al and Cu. Scripta Metall., 1989, 23(6): 821.

[17]

Conrad H, Yang D, Becher P. Effect of an applied electric field on the flow stress of ultrafine-grained 2.5Y-TZP at high temperatures. Mater. Sci. Eng. A, 2008, 477(1–2): 358.

[18]

Liu B, Chen Z, Wang YX, Wang XN. The effect of an electric field on the mechanical properties and microstructure of Al-Li alloy containing Ce. Mater. Sci. Eng. A, 2001, 313(1–2): 69.

[19]

Liu W, Liang KM, Cui JZ, Zheng YK. Study of the diffusion of Al-Li alloys subjected to an electric field. J. Mater. Sci., 1998, 33(4): 1043.

[20]

Cao WD, Lu XP, Sprecher AF, Conrad H. Increased hardenability of steel by an external electric field. Mater. Lett., 1990, 9(5–6): 193.

[21]

Zheng M, Lu XP, Conrad H. Influence of an external electric field during quenching on the hardenability of steel. Scripta Mater., 2001, 44(2): 381.

[22]

Wu CW, Liu TX, Ma GJ. Effect of an electric field applied during the quenching on hardness of carbon steel. Mater. Sci. Eng. A, 2008, 489(1–2): 62.

[23]

Conrad H, Cao WD, Lu XP, Sprecher AF. Effect of an electric field on the superplasticity of 7475 Al. Scripta Metall., 1989, 23(5): 697.

[24]

Cao WD, Lu XP, Sprecher AF, Conrad H. Superplastic deformation behavior of 7475 aluminum alloy in an electric field. Mater. Sci. Eng. A, 1990, 129(2): 157.

[25]

Yang D, Conrad H. Influence of an electric field on the superplastic deformation of 3Y-TZP. Scripta Mater., 1997, 36(12): 1431.

[26]

Sakai K. An overlooked electrostatic force that acts on a non-charged asymmetric conductor in a symmetric (parallel) electric field. J. Electrostat., 2009, 67(1): 67.

[27]

Gomaa E, Mohsen M, Taha AS, Mostafa MM. A study of annealing stages in Al-Mn (3004) alloy after cold rolling using positron annihilation lifetime technique and Vickers microhardness measurements. Mater. Sci. Eng. A, 2003, 362(1–2): 274.

[28]

Tiwari GP, Patil RV. A correlation between vacancy formation energy and cohesive energy. Scripta Metall., 1975, 9(8): 833.

[29]

Badia M, Monma K, Minamino Y, Swalin RA, Bergner D. Self-diffusion and Impurity Diffusion in Pure Metals, 2009, New York, Pergamon, 279

[30]

Kelly A, Groves GW. Lange’s Chemistry Handbook, Version 15th, 1998, New York, McGraw-Hill Professional, 4.30

[31]

Rao GA, Kumar M, Srinivas M, Sarma DS. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718. Mater. Sci. Eng. A, 2003, 355(1–2): 114.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/