Microstructure, crystallography and nucleation mechanism of NANOBAIN steel

Yao Huang , Ai-min Zhao , Jian-guo He , Xiao-pei Wang , Zhi-gang Wang , Liang Qi

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (12) : 1155 -1163.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (12) : 1155 -1163. DOI: 10.1007/s12613-013-0849-6
Article

Microstructure, crystallography and nucleation mechanism of NANOBAIN steel

Author information +
History +
PDF

Abstract

The microstructure of bainite ferrite in NANOBAIN steel transformed at different temperatures was investigated by scanning electron microscopy, transmission electron microscopy, electron back-scattered diffraction, and vickers hardness tester in detail. It is found that the average width of bainitic ferrite (BF) plates can be refined to be thinner with the reduction of temperature (473–573 K), and the bainitic ferrite plates can reach up to 20–74 nm at 473 K. Crystallographic analysis reveals that the bainitic ferrite laths are close to the Nishiyama-Wasserman orientation relationship with their parent austenite. Temperature shows a significant effect on the variant selection, and a decrease in temperature generally weakens the variant selection. Thermodynamic analyses indicates that the Lacher, Fowler and Guggenheim (LFG) model is more suitable than the Kaufman, Radcliffe and Cohen (KRC) model dealing with NANOBAIN steel at a low temperature range. The free energy change ΔG γ→BF is about −1500 J·mol−1 at 473 K, which indicates that nucleation in NANOBAIN steel is the shear mechanism. Finally, the formation of carbon poor regions is thermodynamically possible, and the existence of carbon poor regions can greatly increase the possibility of the shear mechanism.

Keywords

nanostructured materials / high strength steel / bainitic transformations / microstructure / crystallography / nucleation

Cite this article

Download citation ▾
Yao Huang, Ai-min Zhao, Jian-guo He, Xiao-pei Wang, Zhi-gang Wang, Liang Qi. Microstructure, crystallography and nucleation mechanism of NANOBAIN steel. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(12): 1155-1163 DOI:10.1007/s12613-013-0849-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang L, Cai Q, Wu H, Yu W. Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels. Int. J. Miner. Metall. Mater., 2011, 18(5): 543.

[2]

Wei R, Shang C, Wu K. Grain refinement in the coarse-grained region of the heat-affected zone in lowcarbon high-strength microalloyed steels. Int. J. Miner. Metall. Mater., 2010, 17(6): 737.

[3]

Chang M, Yu H. Kinetics of bainite-to-austenite transformation during continuous reheating in low carbon microalloyed steel. Int. J. Miner. Metall. Mater., 2013, 20(5): 427.

[4]

Wang Z, Zhao A, Zhao Z, Ye J, Tang D, Zhu G. Microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels. Int. J. Miner. Metall. Mater., 2012, 19(10): 915.

[5]

Yang Y, Cai Q, Tang D, Wu H. Precipitation and stability of reversed austenite in 9Ni steel. Int. J. Miner. Metall. Mater., 2010, 17(5): 587.

[6]

Garcia-Mateo C, Caballero FG. Ultra-high-strength bainitic steels. ISIJ Int., 2005, 45(11): 1736.

[7]

Hase K, Garcia-Mateo C, Bhadeshia HKDH. Bainite formation influenced by large stress. Mater Sci Technol., 2004, 20(12): 1499.

[8]

Yokota T, Garcia-Mateo C, Bhadeshia HKDH. Formation of nanostructured steels by phase transformation. Scripta Mater., 2004, 51(8): 767.

[9]

Garcia-Mateo C, Bhadeshia HKDH. Nucleation theory for high-carbon bainite. Mater. Sci. Eng A., 2004, 378(1–2): 289.

[10]

Garcia-Mateo C, Peet M, Caballero FG, Bhadeshia HKDH. Tempering of hard mixture of bainitic ferrite and austenite. Mater. Sci. Technol., 2004, 20(7): 814.

[11]

Kitahara H, Ueji R, Tsuji N, Minamino Y. Crystallographic features of lath martensite in low-carbon steel. Acta Mater., 2006, 54(5): 1279.

[12]

Miyamoto G, Iwata N, Takayama N, Furuhara T. Variant selection of lath martensite and bainite transformation in low carbon steel by ausforming. J. Alloys Compd., 2012

[13]

Kawata H, Sakamoto K, Moritani T, Morito S, Furuhara T, Maki T. Crystallography of ausformed upper bainite structure in Fe-9Ni-C alloys. Mater. Sci. Eng. A, 2006, 438, 140.

[14]

Furuhara T, Kawata H, Morito S, Maki T. Crystallography of upper bainite in Fe-Ni-C alloys. Mater. Sci. Eng. A, 2006, 431(1–2): 228.

[15]

Garcia-Mateo C, Caballero FG, Bhadeshia HKDH. Acceleration of low-temperature bainite. ISIJ Int., 2003, 11(43): 1821.

[16]

Singh SB, Bhadeshia HKDH. Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng. A, 1998, 245(1): 72.

[17]

Caballero FG, Miller MK, Babu SS, Garcia-Mateo C. Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Mater., 2007, 55(1): 381.

[18]

Takezawa K, Sato S. Nucleation and growth of bainite crystals in Cu-Zn-Al alloys. Metall. Trans. A, 1990, 21(6): 1541.

[19]

Kitahara H, Ueji R, Ueda M, Tsuji N, Minamino Y. Crystallographic analysis of plate martensite in Fe-28.5at.% Ni by FE-SEM/EBSD. Mater Charact., 2005, 54(4–5): 378.

[20]

Beladi H, Adachi Y, Timokhina I, Hodgson PD. Crystallographic analysis of nanobainitic steels. Scripta Mater., 2009, 60(6): 455.

[21]

Zhang MX, Kelly PM. Crystallography of carbidefree bainite in a hard bainitic steel. Mater. Sci. Eng. A, 2006, 438–440, 272.

[22]

Bhadeshia HKDH, Christian JW. Bainite in steels. Metall. Trans. A, 1990, 21(3): 767.

[23]

Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater., 2004, 52(9): 2765.

[24]

Furuhara T, Kawata H, Morito S, Miyamoto G, Maki T. Variant selection in grain boundary nucleation of up per bainite. Metall. Mater. Trans. A, 2008, 39(5): 1003.

[25]

Moritani T, Miyajima N, Furuhara T, Maki T. Comparison of interphase boundary structure between bainite and martensite in steel. Scripta Mater., 2002, 47(3): 193.

[26]

Wu XL, Zhang XY, Meng XK, Kang MK, Yang YQ. Formation of carbon-poor regions during prebainitic transformation. Mater Lett., 1995, 22(3): 141.

[27]

Kang MK, Yang YQ, Wei QM, Yang QM, Meng X K. On the prebainitic phenomenon in some alloys. Metall. Mater. Trans. A, 1994, 25(9): 1941.

[28]

Speer J, Matlock DK, De Cooman BC, Schroth JG. Carbon partitioning into austenite after martensite transformation. Acta Mater., 2003, 51(9): 2611.

[29]

Enomoto M, Aaronson HI. Nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe-CX alloys. Metall. Trans. A, 1986, 17(8): 1385.

[30]

Ågren J. A thermodynamic analysis of the Fe-C and Fe-N phase diagrams. Metall. Trans. A, 1979, 10(12): 1847.

[31]

Shiflet GJ, Bradley JR, Aaronson HI. A reexamination of the thermodynamics of the proeutectoid ferrite transformation in Fe-C alloys. Metall. Trans. A, 1978, 9(7): 999.

[32]

Caballero FG, Garcia-Mateo C, Santofimia MJ, Miller MK, García de Andrés C. New experimental evidence on the incomplete transformation phenomenon in steel. Acta Mater., 2009, 57(1): 8.

[33]

Ali A, Bhadeshia HKDH. Nucleation of Widmanst ätten ferrite. Mater. Sci. Technol., 1990, 6(8): 781.

[34]

Santofimia MJ, Caballero FG, Capdevila C, García-Mateo C, García de Andrés C. Evaluation of displacive models for bainite transformation kinetics in steels. Mater. Trans., 2006, 47(6): 1492.

[35]

Caballero FG, Garcia-Mateo C, Bhadeshia HKDH. Development of hard bainite. ISIJ Int., 2003, 8(43): 1238

[36]

Dyson DJ, Holmes B. Effect of alloying additions on the lattice parameter of austenite. J. Iron Steel Inst., 1970, 208(5): 469

[37]

Caballero FG, Santofimia MJ, Capdevila C, García-Mateo C, García de Andrés C. Design of advanced bainitic steels by optimisation of TTT diagrams and T 0 curves. ISIJ Int., 2006, 46(10): 1479.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/