Microstructure and properties of nano-TiN modified Ti(C,N)-based cermets fabricated by powder injection molding and die pressing

Shan-jie Yi , Hai-qing Yin , Ke Chen , Dil-Faraz Khan , Qing-jun Zheng , Xuan-hui Qu

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (11) : 1115 -1121.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (11) : 1115 -1121. DOI: 10.1007/s12613-013-0842-0
Article

Microstructure and properties of nano-TiN modified Ti(C,N)-based cermets fabricated by powder injection molding and die pressing

Author information +
History +
PDF

Abstract

Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)-based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with and without nano-TiN addition fabricated by PIM and die pressing were analyzed. It is demonstrated that for either PIM or die pressing, the porosities are obviously reduced, the mechanical properties are significantly improved after adding nano-TiN, and the hard particles are refined; the rim phase thickness obviously becomes thinner, and the number of dimples in fracture also increases. Compared the samples fabricated by die pressing, it is difficult for PIM to obtain dense Ti(C,N)-based cermets. Due to the too much existence of pores and isolated carbon, the mechanical properties of the sintered samples by PIM are inferior to those of the sintered ones by die pressing.

Keywords

cermets / powder injection molding / die pressing / titanium nitride / nanoparticles / mechanical properties

Cite this article

Download citation ▾
Shan-jie Yi, Hai-qing Yin, Ke Chen, Dil-Faraz Khan, Qing-jun Zheng, Xuan-hui Qu. Microstructure and properties of nano-TiN modified Ti(C,N)-based cermets fabricated by powder injection molding and die pressing. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(11): 1115-1121 DOI:10.1007/s12613-013-0842-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jung JK, Kang S. Effect of ultra-fine powders on the microstructure of Ti(CN)-xWC-Ni cermets. Acta Mater., 2004, 52(6): 1379.

[2]

Ettmayer P, Kolaska H, Lengauer W, Dreyer K. Ti(C,N) cermets: metallurgy and properties. Int. J. Refract. Met. Hard Mater., 1995, 13(6): 343.

[3]

Park DS, Park C, Lee YD. Oxidation of Ti(C,N)-based ceramics exposed at 1373 K in air. J. Am. Ceram. Soc., 2000, 83(3): 672.

[4]

Monteverde F, Medri V, Bellosi A. Microstructure of hot-pressed Ti(C,N)-based cermets. J. Eur. Ceram. Soc., 2002, 22(14–15): 2587.

[5]

Wu X, Zhang J. Geographical distribution and characteristics of titanium resources in China. Titanium Ind. Prog., 2006, 23(6): 8

[6]

Cutard T, Viatte T, Feusier G, Benoit W. Microstructure and high temperature mechanical properties of TiC0.7N0.3-Mo2C-Ni cermets. Mater. Sci. Eng. A, 1996, 209(1–2): 218.

[7]

Ettmayer P, Kolaska H, Lengauer W, Dreyer K. Ti(C,N) cermets-metallurgy and properties. Int. J. Refract. Met. Hard Mater., 1995, 13(6): 343.

[8]

Chen L, Lengauer W, Dreyer K. Advances in modern nitrogen-containing hardmetals and cermets. Int. J. Refract. Met. Hard Mater., 2000, 18(2–3): 153.

[9]

Zheng Y, Xiong WH, Liu WJ, Lei W, Yuan Q. Effect of nano addition on the microstructures and mechanical properties of Ti(C,N)-based cermets. Ceram. Int., 2005, 31(1): 165.

[10]

Kear BH, Colaizzi J, Mayo WE, Liao SC. On the processing of nanocrystalline and nanocomposite ceramics. Scripta Mater., 2001, 44(8–9): 2065

[11]

Li Y, Liu N, Zhang XB, Rong CL. Effect of WC content on the microstructure and mechanical properties of (Ti,W)(C,N)-Co cermets. Int. J. Refract. Met. Hard Mater., 2008, 26(1): 33.

[12]

Wang J, Liu Y, Zhang P, Peng JC, Ye JW, Tu MJ. Effect of WC on the microstructure and mechanical properties in the Ti(C0.7N0.3)-xWC-Mo2C-(Co,Ni) system. Int. J. Refract. Met. Hard Mater., 2009, 27(1): 9.

[13]

Yu HJ, Liu Y, Ye JW, Yang J, Li PP, Zhu YF. Effect of (Ti,W,Mo,V)(C,N) powder size on microstructure and properties of (Ti,W,Mo,V)(C,N)-based cermets. Int. J. Refract. Met. Hard Mater., 2012, 34(1): 57.

[14]

Yang QQ, Xiong WH, Li SQ, Li J. Effect of partial substitution of Cr for Ni on densification behavior, microstructure evolution and mechanical properties of Ti(C,N)-Ni-based cermets. J. Alloys Compd., 2011, 509(14): 4828.

[15]

Zou B, Huang CZ, Song JP, Liu ZY, Liu L, Zhao Y. Effects of sintering processes on mechanical properties and microstructure of TiB2-TiC+8wt% nano-Ni composite ceramic cutting tool material. Mater. Sci. Eng. A, 2012, 540(1): 235.

[16]

Wu P, Zheng Y, Zhao YL, Yu HZ. Effect of TaC addition on the microstructures and mechanical properties of Ti(C,N)-based cermets. Mater. Des., 2010, 31(7): 3537.

[17]

Ahn SY, Kang S. Effect of WC particle size on microstructure and rim composition in the Ti(C0.7N0.3)-WCNi system. Scripta Mater., 2006, 55(11): 1015.

[18]

Liu N, Xu YD, Li H, Li GH, Zhang LD. Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets. J. Eur. Ceram. Soc., 2002, 22(13): 2409.

[19]

Liu N, Han CL, Xu YD, Chao S, Shi M, Feng JP. Microstructures and mechanical properties of nano-TiN modified TiC-based cermets for the milling tools. Mater. Sci. Eng. A, 2004, 382(1–2): 122.

[20]

Liu Y, Jin YZ, Yu HJ, Ye JW. Ultrafine (Ti,M)(C,N)-based cermets with optimal mechanical properties. Int. J. Refract. Met. Hard Mater., 2011, 29(1): 104.

[21]

Vaßen R, Stöver D. Processing and properties of nanophase ceramics. J. Mater. Process. Technol., 1999, 92–93(30): 77.

[22]

Zhang HA, Gu SY, Yi JY. Fabrication and properties of Ti(C,N) based cermets reinforced by nano-CBN particles. Ceram. Int., 2012, 38(6): 4587.

[23]

Carneim RD, Messing GL. Response of granular powders to uniaxial loading and unloading. Powder Technol., 2001, 115(2): 131.

[24]

Chen IW, Wang XH. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature, 2000, 404, 168.

[25]

Ni XL, Yin HQ, Liu L, Yi SJ, Qu XH. Injection molding and debinding of micro gears fabricated by micro powder injection molding. Int. J. Miner. Metall. Mater., 2013, 20(1): 82.

[26]

German RM, Hens KF, Lin STP. Key issues in powder injection molding. Am. Ceram. Soc. Bull., 1991, 70(8): 1294

[27]

Kulkarni KM. Future looking bright for PIM. Met. Powder Rep., 2000, 55(10): 40.

[28]

Yin HQ, Qu XH, Jia CC. Fabrication of micro gear wheels by micropowder injection molding. J. Univ. Sci. Technol. Beijing, 2008, 15(4): 480.

[29]

Hauck PA. Powder injection molding: current and long term outlook. Int. J. Powder Metall., 2000, 36(3): 29

[30]

Yin HQ, Du MN, Qu XH, He XB, Jia CC. Manufacturing technology and performance testing of metallic micro-sized components. J. Univ. Sci. Technol. Beijing, 2008, 30(12): 1428

[31]

Yoshimura H, Sugizawa T, Nishigaki K, Doi H. Reaction occurring during sintering and the characteristics of TiC-20TiN-15WC-10TaC-9Mo-5.5Ni-11Co cermet. Int. J. Refract. Met. Hard Mater., 1983, 2(4): 170

[32]

Warren R. Microstructural development during the liquid-phase sintering of two-phase alloys, with special reference to the NbC/Co system. J. Mater. Sci., 1968, 3(5): 471.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/