Effects of thermal aging temperature and Cr content on phase separation kinetics in Fe-Cr alloys simulated by the phase field method

Shu-xiao Li , Hai-long Zhang , Shi-lei Li , Yan-li Wang , Fei Xue , Xi-tao Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (11) : 1067 -1075.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (11) : 1067 -1075. DOI: 10.1007/s12613-013-0835-z
Article

Effects of thermal aging temperature and Cr content on phase separation kinetics in Fe-Cr alloys simulated by the phase field method

Author information +
History +
PDF

Abstract

Phase field simulations of phase separation in Fe-Cr binary alloys were performed by using the Cahn-Hilliard diffusion function. A new mobility model in relation to aging temperature and Cr content was used in the simulations. Two alloys of Fe-30at%Cr and Fe-35at%Cr were investigated at two different aging temperatures of 573 and 673 K. The phase separation kinetics was found to consist of three stages: wavelength modulation, amplitude increase, and coarsening of Cr-enriched regions. A higher thermal aging temperature accelerated the phase separation and increased the wavelength of concentration fluctuation. While the effect of Cr content on the phase separation kinetics was slight, Fe-Cr alloys with a higher Cr content were found to generate a larger number and a finer size of Cr-enriched regions. The simulation results provide consultation for design and safe operation of duplex stainless steel pipes in nuclear power plants.

Keywords

stainless steel / duplex steel / phase separation / kinetics / nuclear power plants

Cite this article

Download citation ▾
Shu-xiao Li, Hai-long Zhang, Shi-lei Li, Yan-li Wang, Fei Xue, Xi-tao Wang. Effects of thermal aging temperature and Cr content on phase separation kinetics in Fe-Cr alloys simulated by the phase field method. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(11): 1067-1075 DOI:10.1007/s12613-013-0835-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bonny G, Pasianot RC, Malerba L, Caro A, Olsson P, Lavrentiev MY. Numerical prediction of thermodynamic properties of iron-chromium alloys using semiempirical cohesive models: the state of the art. J. Nucl. Mater., 2009, 385(2): 268.

[2]

Bonny G, Terentyev D, Malerba L. The hardening of iron-chromium alloys under thermal ageing: an atomistic study. J. Nucl. Mater., 2009, 385(2): 278.

[3]

Cheon JS, Kim IS. Evaluation of thermal aging embrittlement in CF8 duplex stainless steel by small punch test. J. Nucl. Mater., 2000, 278(1): 96.

[4]

Garner FA, McCarthy JM, Russell KC, Hoyt JJ. Spinodal-like decomposition of Fe-35Ni and Fe-Cr-35Ni alloys during irradiation or thermal aging. J. Nucl. Mater., 1993, 205(10): 411.

[5]

Li SL, Wang XT, Wang YL, Li SX. Effects of thermal aging on micro-mechanical properties and impact fracture behavior of Z3CN20-09M stainless steels. Acta Metall. Sin., 2011, 47(6): 751

[6]

Li SL, Wang YL, Li SX, Wang XT. Effect of long term aging on the microstructure and mechanical properties of cast austenitic stainless steels. Acta Metall. Sin., 2010, 46(10): 1186.

[7]

Li SL, Wang YL, Zhang HL, Li SX, Zheng K, Wang XT. Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging. J. Nucl. Mater., 2013, 433(1–3): 41.

[8]

Danoix F, Auger P. Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review. Mater. Charact., 2000, 44(1–2): 177.

[9]

Lopez-Hirata VM, Soriano-Vargas O, Rosales-Dorantes HJ, Muñoz MLS. Phase decomposition in an Fe-40at.% Cr alloy after isothermal aging and its effect on hardening. Mater. Charact., 2011, 62(8): 789.

[10]

Yamada T, Okano S, Kuwano H. Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel. J. Nucl. Mater., 2006, 350(1): 47.

[11]

Novy S, Pareige P, Pareige C. Atomic scale analysis and phase separation understanding in a thermally aged Fe-20at.%Cr alloy. J. Nucl. Mater., 2009, 384(2): 96.

[12]

Miller MK, Hyde JM, Hetherington MG, Cerezo A, Smith GDW, Elliott CM. Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models — I. Introduction and methodology. Acta Metall. Mater., 1995, 43(9): 3385.

[13]

Hyde JM, Miller MK, Hetherington MG, Cerezo A, Smith GDW, Elliott CM. Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models — II. Development of domain size and composition amplitude. Acta Metall. Mater., 1995, 43(9): 3403.

[14]

Hyde JM, Miller MK, Hetherington MG, Cerezo A, Smith GDW, Elliott CM. Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models — III. Development of morphology. Acta Metall. Mater., 1995, 43(9): 3415.

[15]

Soriano-Vargas O, Avila-Davila EO, Lopez-Hirata VM, Cayetano-Castro N, Gonzalez-Velazquez JL. Effect of spinodal decomposition on the mechanical behavior of Fe-Cr alloys. Mater. Sci. Eng. A, 2010, 527(12): 2910.

[16]

Li YS, Li SX, Zhang TY. Effect of dislocations on spinodal decomposition in Fe-Cr alloys. J. Nucl. Mater., 2009, 395(1–3): 120.

[17]

Li YS, Zhu H, Zhang L, Cheng XL. Phase decomposition and morphology characteristic in thermal aging Fe-Cr alloys under applied strain: a phase-field simulation. J. Nucl. Mater., 2012, 429(1–3): 13.

[18]

Cahn JW, Hilliard JE. Free energy of a nonuniform system: I. Interfacial free energy. J. Chem. Phys., 1958, 28(2): 258.

[19]

Cahn JW. On spinodal decomposition. Acta Metall., 1961, 9(9): 795.

[20]

Andersson JO, Sundman B. Thermodynamic properties of the Cr-Fe system. Calphad, 1987, 11(1): 83.

[21]

Raabe D. Computational Materials Science: the Simulation of Materials, Microstructures and Properties, 1998 120.

[22]

Tomiska J. The system Fe-Ni-Cr: revision of the thermodynamic description. J. Alloys Compd., 2004, 379(1–2): 176.

[23]

Honjo M, Saito Y. Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys with use of the cahn-hilliard equation. ISIJ Int., 2000, 40(9): 914.

[24]

Brandes EA, Brook GB. Smithells Metals Reference Book, 1998 7th edition 90

[25]

Lee BJ, Shim JH, Park HM. A semi-empirical atomic potential for the Fe-Cr binary system. Calphad, 2001, 25(4): 527.

[26]

Jönsson B. Assessment of the mobilities of Cr, Fe and Ni in bcc Cr-Fe-Ni alloys. ISIJ Int., 1995, 35(11): 1415.

[27]

Andersson JO, Agren J. Models for numerical treatment of multicomponent diffusion in simple phases. J. Appl. Phys., 1992, 72(4): 1350.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/