Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag

Yang Li , Yi Yue , Zai-qing Que , Mei Zhang , Min Guo

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (10) : 1012 -1020.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (10) : 1012 -1020. DOI: 10.1007/s12613-013-0828-y
Article

Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag

Author information +
History +
PDF

Abstract

Nanostructured Fe-doped titanium dioxide was synthesized from titanium containing electric furnace molten slag (TCEFMS) by using an alkali fusion, followed by a hydrolyzation-acidolysis-calcination route. The effects of alkali/slag mass ratio, calcinating temperature, calcinating time, and water/slag mass ratio on the extraction efficiency and purity of products were systematically studied in this paper. It is indicated that the best extraction efficiency of nanostructured Fedoped titanium dioxide is 99.35%, when the molten slag is calcinated at 700°C for 1 h with the mass ratio of alkali/molten slag of 1.5:1. The influence of alkali/slag mass ratio on the photocatalytic activity of final products was evaluated by the photodegradation of methyl blue under visible light irradiation. A maximum photodegradation efficiency of 88.12% over 30 min was achieved under the optimum conditions.

Keywords

nanostructured materials / titanium dioxide / iron / doping / photocatalysts / slag / extraction / alkali fusion

Cite this article

Download citation ▾
Yang Li, Yi Yue, Zai-qing Que, Mei Zhang, Min Guo. Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(10): 1012-1020 DOI:10.1007/s12613-013-0828-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang MY, Zhang LN, Zhang L, Sui ZT, Tu GF. Selective enrichment of TiO2 and precipitation behavior of perovskite phase in titania bearing slag. Trans. Nonferrous Met. Soc. China, 2006, 16(2): 421.

[2]

Sheng J, Yang S. The Technology of Making Molten Titanium Slag and Pig Iron, 2006, Beijing, Metallurgical Industry Press, 136

[3]

Liu SL, Yang SL, Gao SZ. The trend of technology progress and development on extraction of Panzhihua high titanium blast furnace slag. Panzhihua Sci. Technol. Inf., 2006, 31(4): 10

[4]

Yuan ZF, Wang XQ, Xu C, Li WB, Kwauk M. A new process for comprehensive utilization of complex titania ore. Miner. Eng., 2006, 19(9): 975.

[5]

Zhang L, Zhang LN, Wang MY, Li GQ, Sui ZT. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition. Miner. Eng., 2007, 20(7): 684.

[6]

Liu XH. Study on High-temperature Carbonization and Low-temperature Chlorination on Modified Titanium Bearing Blast Furnace Slag, 2009, Shenyang, Northeastern University, 21

[7]

Lei XF, Xue XX. Preparation, characterization and photocatalytic activity of sulfuric acid-modified titanium-bearing blast furnace slag. Trans. Nonferrous Met. Soc. China, 2010, 20(12): 2294.

[8]

Liu XH, Gai GS, Yang YF, Sui ZT, Li L, Fu JX. Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag (in Chinese). J. Chin. Univ. Min. Technol., 2008, 18(2): 275.

[9]

Liu XH, Sui ZH. Leaching of Ti-bearing blast furnace slag by pressuring. Trans. Nonferrous Met. Soc. China, 2002, 12(6): 1281

[10]

Ma GQ, Zhang Y, Zou M. Study on the synthesis of high titanium slag extracting TiO2 from blast furnace slag of Pangang. J. Sichuan Univ. Sci. Eng. Nat. Sci. Ed., 2007, 20(6): 95

[11]

Guo ZZ, Lou TP, Zhang L, Zhang LN, Sui ZT. Precipitation and growth of perovskite phase in titanium bearing blast furnace slag. Acta Metall. Sin. Engl. Lett., 2007, 20(1): 9.

[12]

Zhang L, Zhang LN, Wang MY, Lou TP, Sui ZT, Jang JS. Effect of perovskite phase precipitation on viscosity of Ti-bearing blast furnace slag under the dynamic oxidation condition. J. Non Cryst. Solids, 2006, 352(2): 123.

[13]

Zhang L, Zhang LN, Wang MY, Li GQ, Sui ZT. Precipitation selectivity of perovskite phase from Ti-bearing blast furnace slag under dynamic oxidation conditions. J. Non Cryst. Solids, 2007, 353(22–23): p.2214

[14]

Lasheen TA. Soda ash roasting of titania slag product from Rosetta ilmenite. Hydrometallurgy, 2008, 93(3–4): 124.

[15]

Feng Y, Wang JG, Wang LN, Qi T, Xue TY, Chu JL. Decomposition of acid dissolved titanium slag from Australia by sodium hydroxide. Rare Met., 2009, 28(6): 564.

[16]

Han YF, Sun TC, Li J, Qi T, Wang LN, Qu JK. Preparation of titanium dioxide from titania-rich slag by molten NaOH method. Int. J. Miner. Metall. Mater., 2012, 19(3): 205.

[17]

Zhou ZM. Study on Separating Titania from Furnace Slag Containing High TiO2 [Dissertation], 2004, Chongqing, Chongqing University, 31

[18]

Liu GG. Study on applied technology of vanadium titanium magnetite based on rotary hearth furnace direct reduction process. Res. Iron Steel, 2012, 40(2): 4

[19]

Ma L, Yang SL, Chen HS. The research on roasting vanadium titanomagnetite with carbon in rotary hearth furnace. Ironmaking, 2011, 30(6): 57

[20]

Gao HT, Liu YY, Ding CH, Dai DM, Liu GJ. Synthesis, characterization, and theoretical study of N, Scodoped nano-TiO2 with photocatalytic activities. Int. J. Miner. Metall. Mater., 2011, 18(5): 606.

[21]

Ren FJ, Yu XB, Ling YH, Feng JY. Micro-arc oxidization fabrication and ethanol sensing performance of Fe-doped TiO2 thin films. Int. J. Miner. Metall. Mater., 2012, 19(5): 461.

[22]

Tsakiridis PE, Oustadakis P, Katsiapi A, Perraki M, Agatzini-Leonardou S. Synthesis of TiO2 nanopowders prepared from purified sulphate leach liquor of red mud. J. Hazard. Mater., 2011, 194(10): 42.

[23]

Duan SZ. Molten Salt Chemistry-principle and Application, 1990, Beijing, Metallurgical Industry Press, 69

[24]

Li Q, Ni W, Li J. The research of synthesis spinel under low temperature. Conserv. Util. Miner. Resour., 1995, 14(3): 21

[25]

Gu ZH, Wei MF, Wang HZ, Zhang WJ. The sintering property and the slag resistance of rich aluminate spinel. Bull. Chin. Ceram. Soc., 1997, 25(3): 29

[26]

Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett., 2003, 32(4): 364.

[27]

Piera E, Tejedor-Tejedor MI, Zorn ME, Anderson MA. Relationship concerning the nature and concentration of Fe(III) species on the surface of TiO2 particles and photocatalytic activity of the catalyst. Appl. Catal., B, 2003, 46(4): 671.

[28]

Xu ZH, Yu JG. Visible-light-induced photoelectronchemical behaviors of Fe-modified TiO2 nanotube arrays. Nanoscale, 2011, 3(8): 3138.

[29]

Su JZ, Feng XJ, Sloppy JD, Guo LJ, Grimes CA. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett., 2011, 11(1): 203.

[30]

Yu JG, Xiang QJ, Zhou MH. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl. Catal. B, 2009, 90(3–4): 595

[31]

Gao MJ. Synthesis of TiO 2 Ordered Hierarchical Structures and Their Photocatalytic Properties, 2012, Beijing, Peking University, 134

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/