Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

Xiao-rong Liu , Sheng-cai Jiang , Yan-jun Liu , Hui Li , Hua-jun Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (10) : 925 -930.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (10) : 925 -930. DOI: 10.1007/s12613-013-0816-2
Article

Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

Author information +
History +
PDF

Abstract

Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans (A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0–3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%–15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

Keywords

titanomagnetite / vanadium / biodesulfurization / Acidithiobacillus ferrooxidans / citric acid / disodium hydrogen phosphate

Cite this article

Download citation ▾
Xiao-rong Liu, Sheng-cai Jiang, Yan-jun Liu, Hui Li, Hua-jun Wang. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(10): 925-930 DOI:10.1007/s12613-013-0816-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma JY, Sun XY, Diao RS. Theory and Practices of Smelting Vanadium-Containing Titanomagnetites in Blast-Furnace, 2000, Beijing, Metallurgical Industry Press

[2]

Zhang JT, Chen B. Occurrence and recycling of main elements in Panxi vanadium-titanium magnetite. Conserv. Util. Miner. Resour., 2008 38

[3]

Liu NY, Deng HB, Wang H. Progress of separating pyrrhotite from magnetite with high-sulphur-content. Non-Ferrous Min. Metall., 2009, 25(5): 17

[4]

Miller JD, Li J, Davidtz JC, Vos F. A review of pyrrhotite flotation chemistry in the processing of PGM ores. Miner. Eng., 2005, 18(8): 855.

[5]

He MF, Qin WQ, Li WZ, Jiao F. Flotation performances of polymorphic pyrrhotite. J. Cent. South Univ., 2012, 19(1): 238.

[6]

Diao RS. New understanding about special problems of smelting vanadium-bearing titanomagnetite with BF. Iron Steel, 1999, 34(6): 12

[7]

Prayuenyong P. Coal biodesulfurization processes. Songklanakarin J. Sci. Technol., 2002, 24(3): 493

[8]

Ivanov IP. Main trends in the biotechnological processing of coals: a review. Solid Fuel Chem., 2007, 41(1): 3.

[9]

Cara J, Carballo MT, Morán A, Bonilla D, Escolano O, García J. Frutos, Biodesulphurisation of high sulphur coal by heap leaching. Fuel, 2005, 84(14): 1905.

[10]

Ke JJ, Li HM. Bacterial leaching of nickel-bearing pyrrhotite. Hydrometallurgy, 2006, 82(3–4): 127

[11]

Cruz FLS, Oliveira VA, Guimarães D, Souza AD, Leão VA. High-temperature bioleaching of nickel sulfides: thermodynamic and kinetic implications. Hydrometallurgy, 2010, 105, 103.

[12]

Ubaldini S, Vegli`o F, Beolchini F, Toro L, Abbruzzese C. Gold recovery from a refractory pyrrhotite ore by biooxidation. Int. J. Miner. Process., 2000, 60, 247.

[13]

Mason LJ, Rice NM. The adaptation of Thiobacillus ferrooxidans for the treatment of nickel-iron sulphide concentrates. Miner. Eng., 2002, 15, 795.

[14]

Santos LRG, Barbosa AF, Souza AD, Leáo VA. Bioleaching of a complex nickel-iron concentrate by mesophile bacteria. Miner. Eng., 2006, 19, 1251.

[15]

Núñez-Ramírez NR, Solís-Soto A, López-Miranda J, Pereyra-Alférez B, Rutiaga-Quiñónes M, Torres L M-, Medrano-Roldán H. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules mine of Coahuila, Mexico. Int. J. Miner. Metall. Mater., 2011, 18(5): 523.

[16]

Liu XR, Jiang SC. Bioleaching of pyrrhotite and pyrite using Acidithiobacillus ferrooxidans. Min. Metall. Eng., 2006, 26(6): 9

[17]

Janzen MP, Nicholson RV, Scharer JM. Pyrrhotite reaction kinetics: reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochim. Cosmochim. Acta, 2000, 64(9): 1511.

[18]

Belzile N, Chen YW, Cai MF, Li YR. A review on pyrrhotite oxidation. J. Geochem. Explor., 2004, 84, 65.

[19]

Ribeiro DA, Maretto DA, Nogueira FCS, Silva MJ, Campos FAP, Domont GB, Poppi RJ, Ottoboni LMM. Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans. World J. Microbiol. Biotechnol., 2011, 27(6): 1469.

[20]

Zhang CG, Zhang Q, Wang J, Zhang RY, He H, Xia JL, Qiu GZ. Effect of anions on growth and sulfur oxidation activity of Acidithiobacillus ferrooxidans. Chin. J. Nonferrous Met., 2009, 19(12): 2237

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/