Modulation of active Cr(III) complexes by bath preparation to adjust Cr(III) electrodeposition

Lei Li , Zhi Wang , Ming-yong Wang , Yi Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (9) : 902 -908.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (9) : 902 -908. DOI: 10.1007/s12613-013-0813-5
Article

Modulation of active Cr(III) complexes by bath preparation to adjust Cr(III) electrodeposition

Author information +
History +
PDF

Abstract

The preparation process of the Cr(III) bath was studied based on a perspective of accelerating the formation of active Cr(III) complexes. The results of ultraviolet-visible absorption spectroscopy (UV-Vis) and electrodeposition showed that active Cr(III) complexes in the bath prepared at room temperature in several days were rare for depositing chromium. The increase of heating temperature, time, and pH value during the bath preparation promoted the formation of active Cr(III) complexes. The chromium deposition rate increased with the concentration of active Cr(III) complexes increasing. Increasing the heating temperature from 60 to 96°C, the chromium deposition rate increased from 0.40 to 0.71 μm/min. When the concentration of active Cr(III) complexes increased, the grain size of Cr coatings increased, and the carbon content of the coating decreased. It is deduced that Cr(H2O)4(OH)L2+ (L is an organic ligand, and its valence is omitted) is a primary active Cr(III) complex.

Keywords

chromium complexes / electrodeposition / complexation / coatings / grain size

Cite this article

Download citation ▾
Lei Li, Zhi Wang, Ming-yong Wang, Yi Zhang. Modulation of active Cr(III) complexes by bath preparation to adjust Cr(III) electrodeposition. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(9): 902-908 DOI:10.1007/s12613-013-0813-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zeng ZX, Sun YL, Zhang JY. The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid. Electrochem. Commun., 2009, 11(2): 331.

[2]

Fang J. Electroplating of Multicomponent Complex, 1983, Beijing, Defense Industry Press, 83

[3]

Mandich NV. Chemistry & theory of chromium deposition: Part I. Chemistry. Plat. Surf. Finish., 1997, 84(5): 108

[4]

Tu Z, Yang Z, Zhang J. Cathode polarization in trivalent chromium plating. Plat. Surf. Finish., 1993, 80(11): 79

[5]

Zeng ZX, Zhang YX, Zhao WJ, Zhang JY. Role of complexing ligands in trivalent chromium electrodeposition. Surf. Coat. Technol., 2011, 205(20): 4771.

[6]

Zeng ZX, Liang AM, Zhang JY. A review of recent patents on trivalent chromium plating. Recent Pat. Mater. Sci., 2009, 2(1): 50.

[7]

Ibrahim SK, Watson A, Gawne DT. The role of formic acid and methanol on speciation rate and quality in the electrodeposition of chromium from trivalent electrolytes. Trans. Inst. Met. Finish., 1997, 75(5): 181

[8]

McDougall J, El-Sharif M, Ma S. Chromium electrodeposition using a chromium (III) glycine complex. J. Appl. Electrochem., 1998, 28(9): 929.

[9]

Rousseau A, Benaben P. Electrochemical study of a trivalent chromium bath for compositionally modulated multilayer application. Met. Finish., 2002, 100(2): 92.

[10]

Van Phuong N, Kwon SC, Lee JY, Shin J, Huy BT, Lee YI. Mechanistic study on the effect of PEG molecules in a trivalent chromium electrodeposition process. Microchem. J., 2011, 99(1): 7.

[11]

Drela I, Szynkarczuk J, Kubicki J. Electrodeposition of chromium from Cr (III) electrolytes in the presence of formic acid. J. Appl. Electrochem., 1989, 19(6): 933.

[12]

Danilov FI, Protsenko VS. Kinetics and mechanism of chromium electroplating from Cr(III) baths. Prot. Met., 2001, 37(3): 223.

[13]

Hong G, Siow KS, Zhiqiang G, Hsieh AK. Hard chromium plating from trivalent chromium solution. Plat. Surf. Finish., 2001, 88(3): 69

[14]

Ibrahim SK, Gawne DT, Watson A. Corrosion and wear resistance of thick chromium deposits from acceler ated Cr (III) electrolytes. Trans. Inst. Met. Finish., 1998, 76(4): 156

[15]

Thusius D. Rate constants and activation parameters for the formation of monosubstituted chromium(III) complexes. Inorg. Chem., 1971, 10(5): 1106.

[16]

Espenson JH. Formation rates of monosubstituted chromium (III) complexes in aqueous solution. Inorg. Chem., 1969, 8(7): 1554.

[17]

Connors KA. Chemical Kinetics: The Study of Reaction Rates in Solution, 1990, New York, Wiley-VCH, 14

[18]

Protsenko VS, Danilov FI. Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds. Electrochim. Acta, 2009, 54(24): 5666.

[19]

Protsenko VS, Gordiienko VO, Danilov FI, Kwon SC, Kim M, Lee JY. Unusually high current efficiency of nanocrystalline Cr electrodeposition process from trivalent chromium bath. Surf. Eng., 2011, 27(9): 690.

[20]

Protsenko VS, Danilov FI, Gordiienko VO, Kwon SC, Kim M, Lee JY. Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath. Thin Solid Films, 2011, 520(1): 380.

[21]

Van Phuong N, Kwon SC, Lee JY, Lee JH, Lee KH. The effects of pH and polyethylene glycol on the Cr(III) solution chemistry and electrodeposition of chromium. Surf. Coat. Technol., 2012, 206(21): 4349.

[22]

Li B, Lin A, Wu X, Zhang YM, Gan FX. Electrodeposition and characterization of Fe-Cr-P amorphous alloys from trivalent chromium sulfate electrolyte. J. Alloys Compd., 2008, 453(1–2): 93.

[23]

Zeng ZX, Liang AM, Zhang JY. Electrochemical corrosion behavior of chromium-phosphorus coatings electrodeposited from trivalent chromium baths. Electrochim. Acta, 2008, 53(24): 7344.

[24]

Survilienė S, Nivinskienė O, Češunienė A, Selskis A. Effect of Cr (III) solution chemistry on electrodeposition of chromium. J. Appl. Electrochem., 2006, 36(6): 649.

[25]

Jiang H. Metallurgical Electrochemistry, 1983, Beijing, Metallurgical Industry Press, 114

[26]

Protsenko VS, Gordiienko VO, Danilov FI. Unusual ‘chemical’ mechanism of carbon co-deposition in Cr-C alloy electrodeposition process from trivalent chromium bath. Electrochem. Commun., 2012, 17, 85.

[27]

Li YF, Gao YM, Xiao B, Min T, Yang Y, Ma SQ, Yi DW. The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations. J. Alloys Compd., 2011, 509(17): 5242.

[28]

Andersson M, Högström J, Urbonaite S, Furlan A, Nyholm L, Jansson U. Deposition and characterization of magnetron sputtered amorphous Cr-C films. Vacuum, 2012, 86(9): 1408.

[29]

Liang AM, Zhang JY. Why the decorative chromium coating electrodeposited from trivalent chromium electrolyte containing formic acid is darker. Surf. Coat. Technol., 2012, 206(17): 3614.

[30]

Saravanan G, Mohan S. Structure, current efficiency, and corrosion properties of brush electrodeposited (BED) Cr from Cr(III)dimethyl formamide (DMF)-bath. J. Appl. Electrochem., 2010, 40(1): 1.

[31]

Kuznetsov VV, Vinokurov EG, Kudryavtsev VN. Kinetics of electroreduction of Cr3+ ions in sulfate solutions. Russ. J. Electrochem., 2001, 37(7): 699.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/