Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment

Lei Wang , Yao Wang , Yang Liu , Xiu Song , Xu-dong Lü , Bei-jiang Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (9) : 861 -866.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (9) : 861 -866. DOI: 10.1007/s12613-013-0807-3
Article

Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment

Author information +
History +
PDF

Abstract

The coarsening behaviors of γ′ and γ″ phases in GH4169 alloy aged at 1023 and 1073 K with electric field treatment (EFT) were investigated by transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is demonstrated that precipitation coarsening occurs, and the growth activation energies of γ′ and γ″ phases can be decreased to 115.6 and 198.1 kJ·mol−1, respectively, by applying the electric field. The formation of a large number of vacancies in the matrix is induced by EFT. Due to the occurrence of vacancy migration, the diffusion coefficients of Al and Nb atoms are increased to be 1.6–5.0 times larger than those without EFT at 1023 or 1073 K. Furthermore, the formation of vacancy clusters is promoted by EFT, and the increase in strain energy for the coarsening of γ′ and γ″ phases can be counterbalanced by the formation of vacancy clusters.

Keywords

superalloys / nickel alloys / precipitation / electric fields / aging / vacancies

Cite this article

Download citation ▾
Lei Wang, Yao Wang, Yang Liu, Xiu Song, Xu-dong Lü, Bei-jiang Zhang. Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(9): 861-866 DOI:10.1007/s12613-013-0807-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids, 1961, 19(1–2): 35.

[2]

Wagner C. Theorie der alterung von niederschlägen durch umlösen. Z. Elektrochem., 1961, 65(7–8): 581

[3]

Moreen HA, Taggart R, Polonis DH. The formation of modulated structures in Ni-V alloys. Metall. Trans., 1974, 5(1): 79

[4]

Raghavan M. Precipitation in a Cu-30 Pct Ni-1 Pct Nb alloy. Metall. Trans. A, 1977, 8(7): 1071.

[5]

Chaturvedi MC, Chung DW. Effect of iron addition on the precipitation behavior of CoNiCr alloys containing Nb. Metall. Trans. A, 1979, 10(11): 1579.

[6]

Han YF, Deb P, Chaturvedi MC. Coarsening be haviour of γ″ and γ′-particles in Inconel alloy 718. Met. Sci., 1982, 16(12): 555.

[7]

Ardell AJ, Nicholson RB. The coarsening of γ′ in Ni-Al alloys. J. Phys. Chem. Solids, 1966, 27(11–12): 1793.

[8]

Rastogi PK, Ardell AJ. The coarsening behavior of the γ′ precipitate in nickel-silicon alloys. Acta Metall., 1971, 19(4): 321.

[9]

Picasso A, Somoza A, Tolley A. Nucleation, growth and coarsening of γ′-precipitates in a Ni-Cr-Al-based commercial superalloy during artificial aging. J. Alloys Compd., 2009, 479(1–2): 129.

[10]

Wang L, Liu Y, Wang YC, Yang YJ. Coarsening behavior of γ′ phase in a nickel base superalloy by high current density electropulsing. Processing and Fabrication of Advanced Materials-X VIII, Sendai, 2009 885

[11]

Conrad H, Cao WD, Lu XP, Sprecher AF. Effect of electric field on cavitation in superplastic aluminum alloy 7475. Mater. Sci. Eng. A, 1991, 138(2): 247.

[12]

Cao WD, Lu XP, Sprecher AF, Conrad H. Superplastic deformation behavior of 7475 aluminum alloy in an electric field. Mater. Sci. Eng. A, 1990, 129(2): 157.

[13]

Schwensfeir RJ, Elbaum C. Electric charge on dislocation arrays in sodium chloride. J. Phys. Chem. Solids, 1967, 28(4): 597.

[14]

Cao WD, Lu XP, Sprecher AF, Conrad H. Increased hardenability of steel by an external electric field. Mater. Lett., 1990, 9(5–6): 193.

[15]

Zheng M, Lu XP, Conrad H. Influence of an external electric field during quenching on the hardenability of steel. Scripta Mater., 2001, 44(2): 381.

[16]

Guo FJ, Li LZ, Zong YB, Cang DQ, Pan W, Zhang J. Effect of electric field on the activity and quenching structure of liquid Cu-Al alloys. J. Univ. Sci. Technol. Beijing, 2005, 12(2): 155

[17]

Boyd JD, Nicholson RB. The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys. Acta Metall., 1971, 19(12): 1379.

[18]

Devaux A, Nazé L, Molins R, Pineau A, Organista A, Guédou JY, Uginet JF, Héritier P. Gamma double prime precipitation kinetic in alloy 718. Mater. Sci. Eng. A, 2008, 486(1–2): 117

[19]

White RJ, Fisher SB. The precipitation and growth kinetics of γ′ in Nimonic PE16. Mater. Sci. Eng., 1978, 33(2): 149.

[20]

Oblak JM, Paulonis DF, Duvall DS. Coherency strengthening in Ni base alloys hardened by DO22 γ″ precipitates. Metall. Trans., 1974, 5(1): 143

[21]

Paul AR, Agarwala RP, Gust W, Hintz HB, Lodding A, Odelius H, Predel B. Diffusion in Solid Metals and Alloys, 1990, Berlin, Springer, 133

[22]

Ardell AJ. An application of the theory of particle coarsening: the γ′ precipitate in Ni-Al alloys. Acta Metall., 1968, 16(4): 511.

[23]

Hirata T, Kirkwood DH. The prediction and measurement of precipitate number densities in a nickel-6.05wt.% aluminium alloy. Acta Metall., 1977, 25(12): 1425.

[24]

Wendt H, Hassen P. Nucleation and growth of γ′-precipitates in Ni-14 at.%Al. Acta Metall., 1983, 31(10): 1649.

[25]

Xiao SQ, Hassen P. HREM investigation of homogeneous decomposition in a Ni-12 at.% A1 alloy. Acta Metall. Mater., 1991, 39(4): 651.

[26]

Ardell AJ. Interfacial free energies and solute diffusivities from data on Ostwald ripening. Interface Sci., 1995, 3(2): 119.

[27]

Li X, Saunders N, Miodownik AP. The coarsening kinetics of γ′ particles in nickel-based alloys. Metall. Mater. Trans. A, 2002, 33(11): 3367.

[28]

Sakai K. An overlooked electrostatic force that acts on a non-charged asymmetric conductor in a symmetric (parallel) electric field. J. Electrostat., 2009, 67(1): 67.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/