Effect of high temperature and high strain rate on the dynamic mechanical properties of Fe-30Mn-3Si-4Al TWIP steel

Zhi-ping Xiong , Xue-ping Ren , Wei-ping Bao , Jian Shu , Shu-xia Li , Hai-tao Qu

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (9) : 835 -841.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (9) : 835 -841. DOI: 10.1007/s12613-013-0804-6
Article

Effect of high temperature and high strain rate on the dynamic mechanical properties of Fe-30Mn-3Si-4Al TWIP steel

Author information +
History +
PDF

Abstract

The dynamic mechanical properties of Fe-30Mn-3Si-4Al twinning induced plasticity (TWIP) steel were studied by the split-Hopkinson pressure bar (SHPB) at temperatures of 298–1073 K and strain rates of 700, 2500, and 5000 s−1. The TWIP steel indicates strain rate hardening effect between 700 and 2500 s−1, but it shows strain rate softening effect between 2500 and 5000 s−1. In addition, the strain rate softening effect enhances with an increase in deformation temperature. After deformation, the microstructures were studied by optical microscopy (OM). It is shown that the deformation bands become more convergence, a part of which become interwoven with an increase in strain rate, and the dynamic recovery and recrystallization are enhanced with an increase in both temperature and strain rate.

Keywords

TWIP steels / mechanical properties / strain rate / temperature

Cite this article

Download citation ▾
Zhi-ping Xiong, Xue-ping Ren, Wei-ping Bao, Jian Shu, Shu-xia Li, Hai-tao Qu. Effect of high temperature and high strain rate on the dynamic mechanical properties of Fe-30Mn-3Si-4Al TWIP steel. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(9): 835-841 DOI:10.1007/s12613-013-0804-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrade U, Meyers MA, Vecchio KS, Chokshi AH. Dynamic recrystallization in high-strain, high-strainrate plastic deformation of copper. Acta Metall. Mater., 1994, 42(9): 3183.

[2]

Nemat-Nasser S, Choi JY, Guo WG, Isaacs JB. Very high strain-rate response of a NiTi shape-memory alloy. Mech. Mater., 2005, 37(2–3): 287.

[3]

Lee WS, Liu CY. The effects of temperature and strain rate on the dynamic flow behaviour of different steels. Mater. Sci. Eng. A, 2006, 426(1–2): 101.

[4]

Chen Y, Clausen AH, Hopperstad OS, Langseth M. Stress-strain behaviour of aluminium alloys at a wide range of strain rates. Int. J. Solids Struct., 2009, 46(21): 3825.

[5]

Challita G, Othman R, Casari P, Khalil K. Experimental investigation of the shear dynamic behavior of double-lap adhesively bonded joints on a wide range of strain rates. Int. J. Adhes. Adhes., 2011, 31(3): 146.

[6]

Mu YL, Yao GC, Cao ZK, Luo HJ, Zu GY. Strain-rate effects on the compressive response of closedcell copper-coated carbon fiber/aluminum composite foam. Scripta Mater., 2011, 64(1): 61.

[7]

Grässel O, Krüger L, Frommeyer G, Meyer LW. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int. J. Plast, 2000, 16(10–11): 1391.

[8]

Chung KS, Ahn KH, Yoo DH, Chung KH, Seo MH, Park SH. Formability of TWIP (twinning induced plasticity) automotive sheets. Int. J. Plast., 2011, 27(1): 52.

[9]

Favier V, Barbier D. Micromechanical modelling of twinning-induced plasticity steels. Scripta Mater., 2012, 66(12): 972.

[10]

Li DZ, Wei YH, Hou LF, Lin WM. Microstructural evolution of surface layer of TWIP steel deformed by mechanical attrition treatment. J. Iron Steel Res. Int., 2012, 19(3): 38.

[11]

Lee YK. Microstructural evolution during plastic deformation of twinning-induced plasticity steels. Scripta Mater., 2012, 66(12): 1002.

[12]

Schinhammer M, Pecnik CM, Rechberger F, Hänzi AC, Löffler JF, Uggowitzer PJ. Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe-Mn-C(-Pd) TWIP alloys. Acta Mater., 2012, 60(6–7): 2746.

[13]

Mi ZL, Tang D, Jiang HT, Dai YJ, Li SS. Effects of annealing temperature on the microstructure and properties of the 25Mn-3Si-3Al TWIP steel. Int. J. Miner. Metall. Mater., 2009, 16(2): 154.

[14]

Sevillano J G, de las Cuevas F. Internal stresses and the mechanism of work hardening in twinning-induced plasticity steels. Scripta Mater., 2012, 66(12): 978.

[15]

Soulami A, Choi KS, Shen YF, Liu WN, Sun X, Khaleel MA. On deformation twinning in a 17.5% Mn-TWIP steel: a physically based phenomenological model. Mater. Sci. Eng. A, 2011, 528(3): 1402.

[16]

Mi ZL, Tang D, Dai YJ, Jiang HT, JC. Insitu observation on the deformation behaviors of Fe-Mn-C TWIP steel. Int. J. Miner. Metall. Mater., 2009, 16(6): 646.

[17]

Li DZ, Wei YH, Liu CY, Hou LF, Liu DF, Jin XZ. Effects of high strain rate on properties and microstructure evolution of TWIP steel subjected to impact loading. J. Iron Steel Res. Int., 2010, 17(6): 67.

[18]

Xiong RG, Fu RY, Su Y, Li Q, Wei XC, Li L. Tensile properties of TWIP steel at high strain rate. J. Iron Steel Res. Int., 2009, 16(1): 81.

[19]

Curtze S, Kuokkala VT. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater., 2010, 58(15): 5129.

[20]

Ueji R, Harada K, Takemura A, Kunishige K. Strain rate sensitivity of 31Mn-3Al-3Si TWIP steel with partially recrystallized fine grained structure. Mater. Sci. Forum, 2008, 584–586, 673.

[21]

Bao WP, Zhao YJ, Xu LW, Xiong ZP, Ren XP. Effect of solution treatment on microstructure and mechanical properties of TWIP steel. Heat Treat. Met., 2010, 35(4): 33.

[22]

Lennon AM, Ramesh KT. A technique for measuring the dynamic behavior of materials at high temperatures. Int. J. Plast., 1998, 14(12): 1279.

[23]

Xiong ZP, Ren XP, Bao WP, Li SX, Qu HT. Dynamic mechanical properties of the Fe-30Mn-3Si-4Al TWIP steel after different heat treatments. Mater. Sci. Eng. A, 2011, 530, 426.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/