Exploration of Al-based matrix composites reinforced by hierarchically spherical agents

Li Zhang , Bao-lin Wu , Yu-hua Zhao , Xing-hao Du

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (8) : 796 -801.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (8) : 796 -801. DOI: 10.1007/s12613-013-0798-0
Article

Exploration of Al-based matrix composites reinforced by hierarchically spherical agents

Author information +
History +
PDF

Abstract

Al-based composites reinforced with Al-Ti intermetallic compounds/Ti metal hierarchically spherical agents were successfully fabricated by powder metallurgy. This kind of structure produces strongly bonded interfaces as well as soft/hard/soft transition regions between the matrix and reinforced agents, which are beneficial to load transfer during deformation. As expected, the resultant composites exhibit promising mechanical properties at ambient temperature. The underlying mechanism was also discussed in this paper.

Keywords

metallic matrix composites / reinforcement / intermetallics / aluminum / titanium / powder metallurgy / microstructure / mechanical properties

Cite this article

Download citation ▾
Li Zhang, Bao-lin Wu, Yu-hua Zhao, Xing-hao Du. Exploration of Al-based matrix composites reinforced by hierarchically spherical agents. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(8): 796-801 DOI:10.1007/s12613-013-0798-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Clyne TW, Withers PJ. An Introduction to Metal Matrix Composites, 1993, Cambridge, Cambridge University Press

[2]

Kainer KU. Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering, 2006, Weinheim, Wiley-VCH

[3]

Lei YC, Zheng Z, Nie JJ, Chen XZ. Effect of Ti-Al on microstructures and mechanical properties of plasma arc in-situ welded joint of SiCp/Al MMCs. Trans. Nonferrous Met. Soc. China, 2008, 18, 809.

[4]

Nie JH, Jia CC, Shi N, Zhang YF, Li Y, Jia X. Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes. Int. J. Miner. Metall. Mater., 2011, 18(6): 695.

[5]

Vasudevan AK, Doherty RD. Aluminum Alloys: Contemporary Research and Applications, 1989, 31, 579.

[6]

Wang Y, Wu ZH, Zhou H, Liao ZD, Zhang HF. Corrosion properties in a simulated body fluid of Mg/β-TCP composites prepared by powder metallurgy. Int. J. Miner. Metall. Mater., 2012, 19(11): 1040.

[7]

Slipenyuk A, Kuprin V, Milman Yu, Goncharuk V, Eckert J. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater., 2006, 54(1): 157.

[8]

Tan MJ, Zhang X. Powder metal matrix composites: selection and processing. Mater. Sci. Eng. A, 1998, 244(1): 80.

[9]

Ren SB, Shen XY, Qu XH, He XB. Effect of Mg and Si on infiltration behavior of Al alloys pressureless infiltration into porous SiCp performs. Int. J. Miner. Metall. Mater., 2011, 18(6): 703.

[10]

Pérez P, Garcés G, Adeva P. Mechanical properties of a Mg-10 (vol.%) Ti composite. Compos. Sci. Technol., 2004, 64(1): 145.

[11]

Hassan SF, Gupta M. Development of ductile magnesium composite materials using titanium as reinforcement. J. Alloys Compd., 2002, 345(1–2): 246.

[12]

Hassan SF, Gupta M. Development of a novel magnesium/nickel composite with improved mechanical properties. J. Alloys Compd., 2002, 335(1): L10.

[13]

Hassan SF, Gupta M. Development of a novel magnesium-copper based composite with improved mechanical properties. Mater. Res. Bull., 2002, 37(2): 377.

[14]

Wang XM, Animesh J, Brydson R. In situ fabrication of Al3Ti particle reinforced aluminium alloy metalmatrix composites. Mater. Sci. Eng. A, 2004, 364(1–2): 339.

[15]

Nofar M, Madaah Hosseini HR, Kolagar-Daroonkolaie N. Fabrication of high wear resistant Al/Al3Ti metal matrix composite by in situ hot press method. Mater. Des., 2009, 30(2): 280.

[16]

Srikanth N, Hoong LK, Gupta M. Dynamic properties characterization of metastable Al/Ti composites. J. Mater. Sci., 2005, 40(16): 4173.

[17]

Abbasi Chianeh V, Madaah Hosseini HR, Nofar M. Micro structural features and mechanical properties of Al-Al3Ti composite fabricated by in-situ powder metallurgy route. J. Alloys. Compd., 2009, 473(1–2): 127.

[18]

Wang SH, Kao PW. The strengthening effect of Al3Ti in high temperature deformation of Al-Al3Ti composites. Acta. Mater., 1998, 46(8): 2675.

[19]

Hsu CJ, Chang CY, Kao PW, Ho NJ, Chang CP. Al-Al3Ti nanocomposites produced in situ by friction stir processing. Acta. Mater., 2006, 54(9): 241.

[20]

Boyd JD, Nicholson RB. A calorimetric determination of precipitate interfacial energies in two Al Cu alloys. Acta Mater., 1971, 19, 1101.

[21]

Liang L.H., You X.M., Ma H.S., Wei Y.G. Interface energy and its influence on interface fracture between metal and ceramic thin films in nanoscale. J. Appl. Phys., 2010, 108, 084317.

[22]

Evans AG, Hutchinson JW, Wei Y. Interface adhesion: effects of plasticity and segregation. Acta. Mater., 1999, 47(15–16): 4093.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/