Surface modification of titanium using steel slag ball and shot blasting treatment for biomedical implant applications

Budi Arifvianto , Suyitno , Muslim Mahardika

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (8) : 788 -795.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (8) : 788 -795. DOI: 10.1007/s12613-013-0797-1
Article

Surface modification of titanium using steel slag ball and shot blasting treatment for biomedical implant applications

Author information +
History +
PDF

Abstract

Surface modification is often performed using grit or shot blasting treatment for improving the performances of biomedical implants. The effects of blasting treatments using steel slag balls and spherical shots on the surface and subsurface of titanium were studied in this paper. The treatments were conducted for 60–300 s using 2–5 mm steel slag balls and 3.18 mm spherical shots. The surface morphology, roughness, and elemental composition of titanium specimens were examined prior to and after the treatments. Irregular and rough titanium surfaces were formed after the treatment with the steel slag balls instead of the spherical shots. The former treatment also introduced some bioactive elements on the titanium surface, but the latter one yielded a harder surface layer. In conclusion, both steel slag ball and shot blasting treatment have their own specialization in modifying the surface of metallic biomaterials. Steel slag ball blasting is potential for improving the osseointegration quality of implants; but the shot blasting is more appropriate for improving the mechanical properties of temporary and load bearing implants, such as osteosynthesis plates.

Keywords

biomedical implants / titanium / surface treatment / blasting

Cite this article

Download citation ▾
Budi Arifvianto, Suyitno, Muslim Mahardika. Surface modification of titanium using steel slag ball and shot blasting treatment for biomedical implant applications. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(8): 788-795 DOI:10.1007/s12613-013-0797-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater., 2007, 23(7): 844.

[2]

Elias CN, Oshida Y, Lima JH, Muller CA. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J. Mech. Behav. Biomed. Mater., 2008, 1(3): 234.

[3]

Rønold HJ, Lyngstadaas SP, Ellingsen JE. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials, 2003, 24(25): 4559.

[4]

Ramires PA, Romito A, Cosentino F, Milella E. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials, 2001, 22(12): 1467.

[5]

Xu LP, Pan F, Yu GN, Yang L, Zhang EL, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials, 2009, 30(8): 1512.

[6]

Müeller WD, Gross U, Fritz T, Voigt C, Fischer P, Berger G, Rogaschewski S, Lange KP. Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clin. Oral Implants Res., 2003, 14(3): 349.

[7]

Piattelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piattelli A. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J. Oral Implantol., 2002, 28(1): 2.

[8]

Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials, 2000, 22(1): 87.

[9]

Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater., 2007, 3(4): 573.

[10]

Multigner M, Frutos E, Mera CL, Chao J, González-Carrasco JL. Interrogations on the sub-surface strain hardening of grit blasted Ti-6Al-4V alloy. Surf. Coat. Technol., 2009, 203(14): 2036.

[11]

Wennerberg A, Albrektsson T, Johansson C, Andersson B. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials, 1996, 17(1): 15.

[12]

Jiang XP, Wang XY, Li JX, Li DY, Man CS, Shepard MJ, Zhai T. Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Mater. Sci. Eng. A, 2006, 429(1–2): 30.

[13]

Kern M, Thompson VP. Effects of sandblasting and silica-coating procedures on pure titanium. J. Dent., 1994, 22(5): 300.

[14]

Multigner M, Ferreira-Barragáns S, Frutos E, Jaafar M, Ibáñez J, Marín P, Pérez-Prado MT, González-Doncel G, Asenjo A, González-Carrasco JL. Superficial severe plastic deformation of 316 LVM stainless steel through grit blasting: effects on its microstructure and subsurface mechanical properties. Surf. Coat. Technol., 2010, 205(7): 1830.

[15]

Chung HI, Kim SK, Lee YS, Yu J. Permeable reactive barrier using atomized slag material for treatment of contaminants from landfills. Geosci. J., 2007, 11(2): 137.

[16]

Arifvianto B, Wibisono SKA, Mahardika M. Influence of grit blasting treatment using steel slag balls on the subsurface microhardness, surface characteristics and chemical composition of medical grade 316L stainless steel. Surf. Coat. Technol., 2012, 210, 176.

[17]

Dewo P. Evaluation and Redesign of an Osteosynthesis Plate, Produced in Indonesia, 2011, Groningen, University of Groningen

[18]

Dai K, Villegas J, Stone Z, Shaw L. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process. Acta Mater., 2004, 52(20): 5771.

[19]

Arifvianto B, Suyitno Mahardika M, Dewo P, Iswanto PT, Salim UA. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L. Mater. Chem. Phys., 2011, 125(3): 418.

[20]

Arifvianto B, Suyitno Mahardika M. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Appl. Surf. Sci., 2012, 258(10): 4538.

[21]

Brentel AS, de Vasconcellos LMR, Oliveira MV, de Alencastro Graça ML, de Vasconcellos LGO, Cairo CAA, Carvalho YR. Histomorphometric analysis of pure titanium implants with porous surface versus rough surface. J. Appl. Oral. Sci., 2006, 14(3): 213.

[22]

Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LT, Hjørting-Hansen E. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J. Biomed. Mater. Res., 1995, 29(10): 1223.

[23]

Jinno T, Kirk SK, Morita S, Goldberg VM. Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model. J. Arthroplasty, 2004, 19(1): 102.

[24]

Dewidar MM, Lim JK. Properties of solid core and porous surface Ti-6Al-4V implants manufactured by powder metallurgy. J. Alloys Compd., 2008, 454(1–2): 442.

[25]

Sabetrashekh R, Tiainen H, Reseland JE, Will J, Ellingsen JE, Lyngstadaas SP, Haugen HJ. Impact of trace elements on biocompatibility of titaniumscaffolds. Biomed. Mater., 2010, 5(1): 1.

[26]

Citeau A, Guicheux J, Vinatier C, Layrolle P, Nguyen TP, Pilet P, Daculsi G. In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials, 2005, 26(2): 157.

[27]

Anselme K, Linez P, Bigerelle M, Le Maguer D, Maguer AL, Hardouin P, Hildebrand HF, Iost A, Leroy JM. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials, 2000, 21(15): 1567.

[28]

Aparicio C, Javier Gil F, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 2003, 24(2): 263.

[29]

Roland T, Retraint D, Lu K, Lu J. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater. Sci. Eng. A, 2007, 445–446, 281.

[30]

Roland T, Retraint D, Lu K, Lu J. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater., 2006, 54(11): 1949.

[31]

Wen M, Liu G, Gu JF, Guan WM, Lu J. The tensile properties of titanium processed by surface mechanical attrition treatment. Surf. Coat. Technol., 2008, 202(19): 4728.

[32]

Dewo P, van der Houwen EB, Sharma PK, Magetsari R, Bor TC, Vargas-Llona LD, van Horn JR, Busscher HJ, Verkerke GJ. Mechanical properties of Indonesian-made narrow dynamic compression plate. J. Mech. Behav. Biomed. Mater., 2012, 13, 93.

[33]

Baleani M, Viceconti M, Toni A. The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses. Artif. Organs, 2000, 24(4): 296.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/