Internal energy transfer phenomenon and light-emission properties of γ-LiAlO2 phosphor doped with Mn2+

Bai-Bin Wang , Chi-Fen Chang , Wein-Duo Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (7) : 678 -683.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (7) : 678 -683. DOI: 10.1007/s12613-013-0783-7
Article

Internal energy transfer phenomenon and light-emission properties of γ-LiAlO2 phosphor doped with Mn2+

Author information +
History +
PDF

Abstract

γ-LiAlO2:Mn2+ phosphor was synthesized using the cellulose-citric acid sol-gel method, and its light emission and energy transfer properties were investigated. Excitation and emission spectrum analysis revealed a decrease in intensity of the spectrum as the amount of Mn2+ doping increased. Blasse’s equation determined the maximum distance for energy transfer between Mn2+ ions as 4.3142 nm. Dexter’s theory verifies that the mechanism of energy transfer between Mn2+ ions conforms to an electric dipole and electric quadrupole interaction.

Keywords

phosphor / energy transfer / light emission / sol-gel process / doping

Cite this article

Download citation ▾
Bai-Bin Wang, Chi-Fen Chang, Wein-Duo Yang. Internal energy transfer phenomenon and light-emission properties of γ-LiAlO2 phosphor doped with Mn2+. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(7): 678-683 DOI:10.1007/s12613-013-0783-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guilbault GG. Practical Fluorescence, 1990, New York, Marcel Dekker

[2]

Wehry EL, Rossiter BW, Baetzold RC. Physical Methods of Chemistry, 1993, New York, Wiley, 109.

[3]

Shionoya S, Yen WM. Phosphor Handbook, 1999, Boca Raton, CRC Press

[4]

Lakshmanan A. Luminescence and Display Phosphors: Phenomena and Applications, 2008, New York, Nova Science Publishers

[5]

Ropp RC. Luminescence and the Solid State, 1991, New Jersey, Elsevier Science

[6]

Brik MG, Teng H, Lin H, Zhou SM, Avramc NM. Spectroscopic and crystal field studies of LiAlO2:Mn2+ single crystals. J. Alloys Compd., 2010, 506, 4.

[7]

Schwarzer H, Neels H. Single crystal synthesis and properties of lithium-gallium-, lithium-aluminium-oxide and mixed compounds (I) growing of LiGaO2−, LiAlO2− and LiAlxGa1−x crystals from fluxes. Kristall Tech., 1971, 6, 639.

[8]

Marezio M. The crystal structure and anomalous dispersion of γ-LiAlO2. Acta Crystallogr., 1965, 19, 396.

[9]

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 1976, 32, 751.

[10]

William DC Jr. Rethwisch DG. Materials Science and Engineering: an Introduction, 2010, New York, Wiley

[11]

Teng H, Zhou SM, Lin H, Jia TT, Hou XR, Wang J. Growth and characterization of high-quality Mndoped LiAlO2 single crystal. Chin. Opt. Lett., 2010, 8, 414.

[12]

Chen W, Sammynaiken R, Huang Y, Malm YO, Wallenberg R, Bovin JO, Zwiller V, Kotov NA. Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles. J. Appl. Phys., 2001, 89, 1120.

[13]

Karar N, Singh F, Mehta BR. Structure and photoluminescence studies on ZnS:Mn nanoparticles. J. Appl. Phys., 2004, 95, 656.

[14]

Bhargava RN. Doped nanocrystalline materials-physics and applications. J. Lumin., 1996, 70, 85.

[15]

Wang CW, Sheu TJ, Su YK, Yokoyama M. Deep traps and mechanism of brightness degradation in Mndoped ZnS thin-film electroluminescent devices grown by metal-organic chemical vapor deposition. Jpn. J. Appl. Phys., 1997, 36, 2728.

[16]

Sapra S, Prakash A, Ghangrekar A, Periasamy N, Sharma DD. Emission properties of manganese-doped ZnS nanocrystals. J. Phys. Chem. B, 2005, 109, 1663.

[17]

Sarkar R, Tiwary CS, Kumbhakar P, Basu S, Mitra AK. Yellow-orange light emission from Mn2+-doped ZnS nanoparticles. Phys. E, 2008, 40, 3115.

[18]

Curie D, Barthou C, Canny B. Covalent bonding of Mn2+ ions in octahedral and tetrahedral coordination. J. Chem. Phys., 1974, 61, 3048.

[19]

Lohr LL. Optical spectra of divalent manganese salts: I. Energy levels for cubic and lower-symmetry complexes. J. Chem. Phys., 1966, 45, 3611.

[20]

Mehra AK. Trees correction matrices for d5 configuration in cubic symmetry. J. Chem. Phys., 1968, 48, 4384.

[21]

Koide S, Pryce MHL. Intensity calculation of some optical absorption lines in hydrated manganous salts. Philos. Mag., 1958, 3, 607.

[22]

Blasse G. Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem., 1986, 62, 207.

[23]

Blasse G. Energy transfer in oxidic phosphors. Phys. Lett. A, 1968, 28, 444.

[24]

Dexter DL. A theory of sensitized luminescence in solids. J. Chem. Phys., 1953, 21, 836.

[25]

Dexter DL, Schulman JH. Theory of concentration quenching in inorganic phosphors. J. Chem. Phys., 1954, 22, 1063.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/