High-cycle fatigue crack initiation and propagation in laser melting deposited TC18 titanium alloy

Yang Wang , Shu-quan Zhang , Xiang-jun Tian , Hua-ming Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (7) : 665 -670.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (7) : 665 -670. DOI: 10.1007/s12613-013-0781-9
Article

High-cycle fatigue crack initiation and propagation in laser melting deposited TC18 titanium alloy

Author information +
History +
PDF

Abstract

This article examines fatigue crack nucleation and propagation in laser deposited TC18 titanium alloy. The Widmanstätten structure was obtained by double-annealing treatment. High-cycle fatigue (HCF) tests were conducted at room temperature with the stress ratio of 0.1 and the notch concentration factor K t = 1. Fatigue cracks initiated preferentially at micropores, which had great effect on the HCF properties. The effect decreased with the decrease of pore size and the increase of distance from the pore location to the specimen surface. The crack initiation region was characterized by the cleavage facets of α lamella and the tearing of β matrix. The soft α precipitated-free zone formed along grain boundaries accelerated the crack propagation. Subsurface observation indicated that the crack preferred to propagate along the grain boundary α or border of α lamella or vertical to α lamella.

Keywords

titanium alloys / fatigue / crack initiation / crack propagation / laser melting deposition

Cite this article

Download citation ▾
Yang Wang, Shu-quan Zhang, Xiang-jun Tian, Hua-ming Wang. High-cycle fatigue crack initiation and propagation in laser melting deposited TC18 titanium alloy. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(7): 665-670 DOI:10.1007/s12613-013-0781-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo SB, Zhang HA, Zhang RF, He XB, Qin ML, Qu XH. Microstructure and properties of a titanium alloy by metal injection molding. J. Univ. Sci. Technol. Beijing, 2007, 29(7): 721.

[2]

Luo L, Mao XN, Yang GJ, Niu RR. Brief introduction for BT22 titanium alloy. Hot Work. Technol., 2009, 38(14): 14.

[3]

Qu HP, Wang HM. Microstructure and mechanical properties of laser melting deposited Γ-TiAl intermetallic alloys. Mater. Sci. Eng. A, 2007, 466(1–2): 187.

[4]

Xi MZ, Zhang YZ, Shi LK, Cheng J. Investigation on the fully dense metal part by laser rapid prototyping. J. Univ. Sci. Technol. Beijing, 2002, 24(4): 441.

[5]

Santos EC, Shiomi M, Osakada K, Laoui T. Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf., 2006, 46(12–13): 1459.

[6]

Sinha V, Mercer C, Soboyejo WO. An investigation of short and long fatigue crack growth behavior of Ti-6Al-4V. Mater. Sci. Eng. A, 2000, 287(1): 30.

[7]

Srivatsan TS, Kuruvilla M, Park L. A study at understanding the mechanisms governing the high cycle fatigue and final fracture behavior of the titanium alloy: Ti-4Al-2.5V. Mater. Sci. Eng. A, 2010, 527(3): 435.

[8]

Oguma H, Nakamura T. Fatigue crack propagation properties of Ti-6Al-4V in vacuum environments. Int. J. Fatigue, 2013, 50, 89.

[9]

Chan KS. Roles of microstructure in fatigue crack initiation. Int. J. Fatigue, 2010, 32(9): 1428.

[10]

Li SK, Xiong BQ, Hui SX, Ye WJ, Yu Y. Comparison of the fatigue and fracture of Ti-6Al-2Zr-1Mo-1V with lamellar and bimodal microstructures. Mater. Sci. Eng. A, 2007, 460–461, 140.

[11]

Yang Y, Xu F, Huang AJ, Li GP. Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α + β phase field. Acta Metall. Sin., 2005, 41(7): 713.

[12]

Lu Y, Tang HB, Fang YL, Liu D, Wang HM. Microstructure evolution of sub-critical annealed laser deposited Ti-6Al-4V alloy. Mater. Des., 2012, 37, 56.

[13]

Han D, Zhang PS, Mao XN, Lu YF, Xi ZP, Yang JC. Effect of two typical heat treatments on microstructure and properties of TC18 titanium alloy. Titanium Ind. Prog., 2009, 26(6): 23.

[14]

Lin CW, Ju CP, Chern Lin JH. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys. Biomaterials, 2005, 26(16): 2899.

[15]

He RJ, Wang HM. HCF Properties of Laser Deposited Ti-6Al-2Zr-Mo-V Alloy. Acta Aeronaut. Astronaut. Sin., 2010, 31(7): 1488.

[16]

Jin O, Mall S. Effects of microstructure on short crack growth behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy. Mater. Sci. Eng. A, 2003, 359(1–2): 356.

[17]

Zuo JH, Wang ZG, Han EH. Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V. Mater. Sci. Eng. A, 2008, 473(1–2): 147.

[18]

Lütjering G, Albrecht J, Sauer C, Krull T. The in?uence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior. Mater. Sci. Eng. A, 2007, 468–470, 201.

[19]

Ghonem H. Microstructure and fatigue crack growth mechanisms in high temperature titanium alloys. Int. J. Fatigue, 2010, 32(9): 1448.

[20]

Bhattacharyya D, Viswanathan GB, Denkenberger R, Furrer D, Fraser HL. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy. Acta Mater., 2003, 51(16): 4679.

[21]

Savage MF, Tatalovich J, Zupan M, Hemker KJ, Mills MJ. Deformation mechanisms and microtensile behavior of single colony Ti-6242Si. Mater. Sci. Eng. A, 2001, 319–321, 398.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/