Tensile and compressive behavior of Ti-based bulk metallic glass composites

Yong-sheng Wang , Guo-jian Hao , Jun-pin Lin

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (6) : 582 -588.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (6) : 582 -588. DOI: 10.1007/s12613-013-0769-5
Article

Tensile and compressive behavior of Ti-based bulk metallic glass composites

Author information +
History +
PDF

Abstract

This article focuses on the tensile and compressive characteristics of a Ti-based bulk metallic glass composite (BMGC). It is found that the yield stress, maximum strength, and fracture strain are 1380 MPa, 1516 MPa, and 4.3% for uniaxial tension, but 1580 MPa, 4010 MPa, and 29% for uniaxial compression, respectively. The composite displays a linear “work hardening” capacity under compression; however, the “work softening” behavior is observed in the true engineering stress-strain curve upon tensile loading. The fracture surfaces of specimens also exhibit dissimilar properties under the different loadings.

Keywords

metallic glass / composite materials / tensile testing / compression testing / fracture

Cite this article

Download citation ▾
Yong-sheng Wang, Guo-jian Hao, Jun-pin Lin. Tensile and compressive behavior of Ti-based bulk metallic glass composites. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(6): 582-588 DOI:10.1007/s12613-013-0769-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hofmann DC, Suh JY, Wiest A, Duan G, Lind ML, Demetriou MD, Johnson WL. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 2008, 451(7182): 1085.

[2]

He G, Eckert J, Löser W, Schultz L. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater., 2003, 2(1): 33.

[3]

Hofmann DC, Suh JY, Wiest A, Lind ML, Demetriou MD, Johnson WL. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. USA, 2008, 105(51): 20136.

[4]

Hays CC, Kim CP, Johnson WL. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett., 2000, 84(13): 2901.

[5]

Hufnagel TC, Jiao T, Li Y, Xing LQ, Ramesh KT. Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res., 2002, 17(6): 1441.

[6]

Zhang QS, Zhang W, Xie GQ, Inoue A. Synthesis, structure and mechanical properties of Zr-Cu-based bulk metallic glass composites. Int. J. Miner. Metall. Mater., 2010, 17(2): 208.

[7]

Qiao JW, Zhang Y, Li JH, Chen GL. Strain rate response of a Zr-based composite fabricated by Bridgman solidification. Int. J. Miner. Metall. Mater., 2010, 17(2): 214.

[8]

Tian W, Pang SJ, Men H, Ma CL, Zhang T. Mg-Cu-Zn-Y-Zr bulk metallic glassy composite with high strength and plasticity. J. Univ. Sci. Technol. Beijing, 2007, 14(Suppl.1): 43.

[9]

Szuecs F, Kim CP, Johnson WL. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater., 2001, 49(9): 1507.

[10]

Gu XJ, Poon SJ, Shiflet GJ, Lewandowski JJ. Compressive plasticity and toughness of a Ti-based bulk metallic glass. Acta Mater., 2010, 58(5): 1708.

[11]

Liu YH, Wang G, Wang RJ, Zhao DQ, Pan MX, Wang WH. Super plastic bulk metallic glasses at room temperature. Science, 2007, 315(5817): 1385.

[12]

Chen Y, Jiang MQ, Wei YJ, Dai LH. Failure criterion for metallic glasses. Philos. Mag., 2011, 91(36): 4536.

[13]

Phys. Rev. Lett., 2003, 91(4)

[14]

J. Appl. Phys., 2011, 109(8)

[15]

Zhang ZF, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20-Al10Ni8Ti3 bulk metallic glass. Acta Mater., 2003, 51(4): 1167.

[16]

He G, Zhang ZF, Loser W, Eckert J, Schultz L. Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass. Acta Mater., 2003, 51(8): 2383.

[17]

Wang JW, Duan QQ, Huang CX, Wu SD, Zhang ZF. Tensile and compressive deformation behaviors of commercially pure Al processed by equal-channel angular pressing with different dies. Mater. Sci. Eng., A, 2008, 496(1–2): 409.

[18]

Bhattacharyya D, Cerreta EK, McCabe R, Niewczas M, Gray GT, Misra A, Tomé CN. Origin of dislocations within tensile and compressive twins in pure textured Zr. Acta Mater., 2009, 57(2): 305.

[19]

Scripta Mater., 2009, 61(11p.1087)

[20]

Qiao JW, Zhang JT, Jiang F, Zhang Y, Liaw PK, Ren Y, Chen GL. Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures. Mater. Sci. Eng. A, 2010, 527(29–30): 7752.

[21]

Qiao JW, Sun AC, Huang EW, Zhang Y, Liaw PK, Chuang CP. Tensile deformation micromechanisms for bulk metallic glass matrix composites: from work-hardening to softening. Acta Mater., 2011, 59(10): 4126.

[22]

Qiao JW, Zhang Y, Feng P, Zhang QM, Chen GL. Strain rate response of mechanical behaviors for a Zr-based bulk metallic glass matrix composite. Mater. Sci. Eng. A, 2009, 515(1–2): 141.

[23]

Cheng JL, Chen G, Xu F, Du YL, Li YS, Liu CT. Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites. Intermetallics, 2010, 18(12): 2425.

[24]

Wu Y, Wang H, Wu HH, Zhang ZY, Hui XD, Chen GL, Ma D, Wang XL, Lu ZP. Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties. Acta Mater., 2011, 59(8): 2928.

[25]

Pauly S, Liu G, Wang G, Kühn U, Mattern N, Eckert J. Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater., 2009, 57(18): 5445.

[26]

Mei JN, Li JS, Kou HC, Hu R, Fu HZ, Zhou L. Effects of Ta addition on the microstructure and mechanical properties of Ti40Zr25Ni8Cu9Be18 amorphous alloy. J. Univ. Sci. Technol. Beijing, 2007, 14(1): 31.

[27]

Peng WJ, Zhang Y. Eutectic reaction and cored dendritic morphology in yttrium doped Zr-based amorphous alloys. Int. J. Miner. Metall. Mater., 2012, 19(8): 747.

[28]

Ding XF, Lin JP, Zhang LQ, Wang HL, Hao GJ, Chen GL. Microstructure development during directional solidification of Ti-45Al-8Nb alloy. J. Alloys. Compd., 2010, 506(1): 115.

[29]

Wu FF, Zhang ZF, Peker A, Mao SX, Das J, Eckert J. Strength asymmetry of ductile dendrites reinforced Zr- and Ti-based composites. J. Mater. Res., 2006, 21(9): 2331.

[30]

Lee ML, Li Y, Schuh CA. Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater., 2004, 52(14): 4121.

[31]

Schuh CA, Lund AC. Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater., 2003, 2(7): 449.

[32]

Phys. Rev. B, 2007, 75(13)

[33]

Wu FF, Zhang ZF, Mao SX. Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater., 2009, 57(1): 257.

[34]

Jiang MQ, Ling Z, Meng JX, Dai LH. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philos. Mag., 2008, 88(3): 407.

[35]

J. Appl. Phys., 2005, 97(3)

[36]

Phys. Rev. Lett., 2011, 106(13)

[37]

Guo FQ, Poon SJ, Shiflet GJ. Networking amorphous phase reinforced titanium composites which show tensile plasticity. Philos.Mag. Lett., 2008, 88(8): 615.

[38]

Pekarskaya E, Kim CP, Johnson WL. In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res., 2001, 16(9): 2513.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/