PDF
Abstract
Two packing structures with the maximum packing densities of 0.64 and 0.74 for the amorphous state and crystalline state, respectively, were numerically reproduced in the packing densification of equal spheres subjected to onedimensional and three-dimensional vibrations using the discrete element method (DEM), and the results were physically validated. These two packing structures were analyzed in terms of coordination number (CN), radial distribution function (RDF), angular distribution function (ADF), and pore size distribution (Voronoi/Delaunay tessellation). It is shown that CN distributions have the peak values of 7 and 12 for the amorphous state and crystalline state, respectively. RDF and ADF distributions show isolated peaks and orientation preferences for the crystalline state, indicating the long range and angle correlation among particles commonly observed in the crystalline state. Voronoi/Delaunay tessellation also shows smaller and narrower pore size distribution for the crystalline state.
Keywords
particle packing
/
densification
/
vibrations
/
discrete element method
Cite this article
Download citation ▾
Xi-zhong An.
Densification of the packing structure under vibrations.
International Journal of Minerals, Metallurgy, and Materials, 2013, 20(5): 499-503 DOI:10.1007/s12613-013-0757-9
| [1] |
German R M. Particle Packing Characteristics, 1989, Princeton, Metal Powder Industries Federation, 1.
|
| [2] |
Bideau D, Hansen A. Disorder and Granular Media, Random Materials and Processes Series, 1993, Amsterdam, Elsevier, 3.
|
| [3] |
Jaeger H M, Nagel SR, Behringer RP. Granular solids, liquids, and gases. Rev. Mod. Phys., 1996, 68(4): 1259.
|
| [4] |
Zhou X L, Wu XK, Guo HH, Wang JG, Zhang JS. Deposition behavior of multi-particle impact in cold spraying process. Int. J. Miner. Metall. Mater., 2010, 17(5): 635.
|
| [5] |
Eswaraiah C, Biswal SK, Mishra BK. Settling characteristics of ultrafine iron ore slimes. Int. J. Miner. Metall. Mater., 2012, 19(2): 95.
|
| [6] |
Bernal J D. A geometrical approach to the structure of liquids. Nature, 1959, 183(4655): 141.
|
| [7] |
Scott G D. Packing of spheres: packing of equal spheres. Nature, 1960, 188(4754): 908.
|
| [8] |
Finney J L. Random packings and the structure of simple liquids: I. The geometry of random close packing. Proc. R. Soc. Lond. A, 1970, 319(1539): 479.
|
| [9] |
Woodcock L V. Glass transition in the hard-sphere model. J. Chem. Soc. Faraday Trans. 2, 1976, 72, 1667.
|
| [10] |
Torquato S. Glass transition: hard knock for thermodynamics. Nature, 2000, 405(6786): 521.
|
| [11] |
Phys. Rev. Lett., 2003, 90(15)
|
| [12] |
Phys. Rev. Lett., 2005, 95(20)
|
| [13] |
An X Z, Li CX, Yang RY, Zou RP, Yu AB. Experimental study of the packing of mono-sized spheres subjected to one-dimensional vibration. Powder Technol., 2009, 196(1): 50.
|
| [14] |
Pouliquen O, Nicolas M, Weidman PD. Crystallization of non-Brownian spheres under horizontal shaking. Phys. Rev. Lett., 1997, 79(19): 3640.
|
| [15] |
van Blaaderen A, Ruel R, Wiltzius P. Templatedirected colloidal crystallization. Nature, 1997, 385, 321.
|
| [16] |
Blair D L, Mueggenburg NW, Marshall AH, Jaeger HM, Nagel SR. Force distributions in threedimensional granular assemblies: effects of packing order and interparticle friction. Phys. Rev. E, 2001, 63(41): 413041.
|
| [17] |
Phys. Rev. Lett., 2002, 89(26)
|
| [18] |
Phys. Rev. E, 2002, 66(4)
|
| [19] |
Spannuth M J, Mueggenburg NW, Jaeger HM, Nagel SR. Stress transmission through three-dimensional granular crystals with stacking faults. Granular Matter, 2004, 6(4): 215.
|
| [20] |
Phys. Rev. Lett., 2006, 97(26)
|
| [21] |
Li C X, An XZ, Yang RY, Zou RP, Yu AB. Experimental study on the packing of uniform spheres under three-dimensional vibration. Powder Technol., 2011, 208(3): 617.
|
| [22] |
An X Z, Yang RY, Dong KJ, Yu AB. DEM study of crystallization of monosized spheres under mechanical vibrations. Comput. Phys. Commun., 2011, 182(9): 1989.
|
| [23] |
An X Z. Discrete element method numerical modelling on crystallization of smooth hard spheres under mechanical vibration. Chin. Phys. Lett., 2007, 24(7): 2032.
|
| [24] |
Nolan G T, Kavanagh PE. Computer simulation of random packing of hard spheres. Powder Technol., 1992, 72(2): 149.
|
| [25] |
Knight J B, Fandrich CG, Lau CN, Jaeger HM, Nagel SR. Density relaxation in a vibrated granular material. Phys. Rev. E, 1995, 51(5): 3957.
|
| [26] |
Philippe P, Bideau D. Compaction dynamics of a granular medium under vertical tapping. Europhys. Lett., 2002, 60(5): 677.
|
| [27] |
Hales T C. The sphere packing. Discrete Comput. Geom., 1997, 17, 1.
|
| [28] |
Szpiro G G. Kepler’s Conjecture: How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World, 2003, New York, Wiley, 1.
|
| [29] |
Yang R Y, Zou RP, Yu AB. Computer simulation of the packing of fine particles. Phys. Rev. E, 2000, 62(3): 3900.
|
| [30] |
An X Z, Yang RY, Zou RP, Yu AB. Effect of vibration condition and inter-particle frictions on the packing of uniform spheres. Powder Technol., 2008, 188(2): 102.
|
| [31] |
Oger L, Gervois A, Troadec JP, Rivier N. Voronoi tessellation of packings of spheres: topological correlation and statistics. Philos. Mag. B, 1996, 74(2): 177.
|
| [32] |
Phys. Rev. E, 2002, 65(4)
|
| [33] |
Phys. Rev. E, 2005, 71(6)
|
| [34] |
Yang R Y, Zou RP, Yu AB, Choi SK. Pore structure of the packing of fine particles. J. Colloid Interface Sci., 2006, 299(2): 719.
|
| [35] |
An X Z. Evolution of Voronoi/Delaunay characterized micro structure with transition from loose to dense sphere packing. Chin. Phys. Lett., 2007, 24(8): 2327.
|
| [36] |
Montoro J C G, Abascal JLF. The Voronoi polyhedra as tools for structure determination in simple disordered systems. J. Phys. Chem., 1993, 97(16): 4211.
|