Effect of Y2O3 on the crystallization kinetics of TiO2 nucleated LAS glass for the production of nanocrystalline transparent glass ceramics

Mohammad Sadegh Shakeri

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (5) : 450 -455.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (5) : 450 -455. DOI: 10.1007/s12613-013-0750-3
Article

Effect of Y2O3 on the crystallization kinetics of TiO2 nucleated LAS glass for the production of nanocrystalline transparent glass ceramics

Author information +
History +
PDF

Abstract

Crystallization kinetics of metastable β-quartz solid solution as a desirable phase for the production of transparent lithium aluminosilicate (LAS) glass ceramics was investigated in the presence of Y2O3. Accordingly, differential thermal analysis scans were performed thoroughly to study the mechanism of crystallization kinetics. The aim of this investigation is to discover the complicated mechanism of crystallization process in the presence of co-additives and accordingly find a way for increasing the transparency of glass ceramics. It is shown that the bulk (3D) growth is intensively increased by the enhancement of Y2O3. Then again, reducing nucleation and increasing growth mechanisms were recognized for the LAS system in the presence of Y2O3. Results of the investigation illustrate that when co-additives are added to glasses, it is necessary to nucleate the optical component separately before the growth process.

Keywords

glass ceramics / lithium aluminosilicate / yttria / crystallization kinetics / nanocrystals / transparency

Cite this article

Download citation ▾
Mohammad Sadegh Shakeri. Effect of Y2O3 on the crystallization kinetics of TiO2 nucleated LAS glass for the production of nanocrystalline transparent glass ceramics. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(5): 450-455 DOI:10.1007/s12613-013-0750-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cantalini C, Pelino M. Characterization of crystal phases, morphology and crystallization processes in lithium aluminosilicate glass-ceramic. J. Mater. Sci., 1992, 27(2): 448.

[2]

Höland W, Rheinberger V, Schweiger M. Control of nucleation in glass ceramics. Philos. Trans. R. Soc. Lond. A, 2003, 361(1804): 575.

[3]

El-Shennawi AWA, Hamzawy E MA, Khater GA, Omar AA. Crystallization of some aluminosilicate glasses. Ceram. Int., 2001, 27(7): 725.

[4]

Hu A M, Li M, Mao DL. Growth behavior, morphology and properties of lithium aluminosilicate glass ceramics with different amount of CaO, MgO and TiO2 additive. Ceram. Int., 2008, 34(6): 1393.

[5]

Golubkov VV, Dymshits OS, Zhilin AA, Chuvaeva TI. Kinetics of the Ostwald ripening in lithium aluminosilicate glasses containing TiO2 and ZrO2. Glass Phys. Chem., 2000, 26(2): 38.

[6]

Nakagawa K, Izumitani T. Metastable phase separation and crystallization of Li2O-Al2O3-SiO2 glasses: determination of miscibility gap from the lattice parameters of precipitated β-quartz solid solution. J. Non Cryst. Solids, 1972, 7, 168.

[7]

Pinckney LR, Beall GH. Microstructural evolution in some silicate glass-ceramics: a review. J. Am. Ceram. Soc., 2008, 91(3): 773.

[8]

Guedes M, Ferro AC, Ferreira J MF. Nucleation and crystal growth in commercial LAS compositions. J. Eur. Ceram. Soc., 2001, 21(9): 1187.

[9]

Mortier M, Monteville A, Patriarche G, Mazé G, Auzel F. New progresses in transparent rare-earth doped glass-ceramics. Opt. Mater., 2001, 16, 255.

[10]

Hu A M, Liang K M, Zhou F, Wang GL, Peng F. Phase transformations of Li2O-Al2O3-SiO2 glasses with CeO2 addition. Ceram. Int., 2005, 31, 11.

[11]

Zheng WH, Cheng JS, Quan JQ, Lou XC, Liu J. Crystallization and properties of some CaO-Al2O3-SiO2 system glass-ceramics with Y2O3 addition. Trans. Nonferrous Met. Soc. China, 2006, 16, 105.

[12]

Zheng WH, Cheng JS, Tang LY, Quan J, Cao X. Effect of Y2O3 addition on viscosity and crystallization of the lithium aluminosilicate glasses. Thermochim. Acta, 2007, 456, 69.

[13]

Atkinson DIH, McMillan PW. Glass-ceramics with random and Oriented microstructures. J. Mater. Sci., 1977, 12, 443.

[14]

Nocun M, Handke M. Structural inhomogeneity in glasses from the system Li2O3-Al2O3-SiO2 revealed by IR spectroscopy. J. Mol. Struct., 2001, 596, 139.

[15]

Suzdal’tsev EI, Borodai SP, Khamitsaev AS, Kharitonov DV. IR spectroscopy study of pre-crystallization and its effect on the phase composition of lithium aluminosilicate glass and glass ceramic. Refract. Ind. Ceram., 2004, 45(1): 19.

[16]

Afonin AG, Alekseeva LA, Borodai SP, Lyashenko LP, Shcherbakova LG, Suzdal’tsev EI. Phase composition of lithium aluminosilicate glass-ceramics. Inorg. Mater., 2006, 42, 562.

[17]

Bae SJ, Kang U, Dymshits O, Shashkin A, Tsenter M, Zhilin A. Raman spectroscopy study of phase transformations in titania-containing lithium aluminosilicate glasses doped with CoO. J. Non Cryst. Solids, 2005, 351, 2969.

[18]

Bals R K S, Bertoni G, Tendeloo GV. Structural characterization of Er-doped Li2O-Al2O3-SiO2 glass ceramics. Opt. Mater., 2008, 30, 1183.

[19]

O’Connor SJ, MacKenzie KJD. Synthesis, characterisation and thermal behaviour of lithium aluminosilicate inorganic polymers. J. Mater. Sci., 2010, 45, 3707.

[20]

Hu A, Li M, Mao D. Controlled crystallization of glass-ceramics with two nucleating agents. Mater. Charact., 2009, 60, 1529.

[21]

Ananthanarayanan A, Kothiyal GP, Montagne L, Revel B. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P2O5 and TiO2 nucleants. J. Solid State Chem., 2010, 183, 1416.

[22]

Arvind A, Sarkar A, Shrikhande VK, Tyagi AK, Kothiyal GP. The effect of TiO2 addition on the crystallization and phase formation in lithium aluminum silicate (LAS) glasses nucleated by P2O5. J. Phys. Chem. Solids, 2008, 69, 2622.

[23]

Liu F, Sommer F, Bos C, Mittemeijer EJ. Analysis of solid state phase transformation kinetics: models and recipes. Int. Mater. Rev., 2007, 52(4): 193.

[24]

Liu F, Sommer F, Mittemeijer EJ. Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters. J. Mater. Sci., 2007, 42, 573.

[25]

Liu F, Song SJ, Sommer F, Mittemeijer EJ. Evaluation of the maximum transformation rate for analyzing solid-state phase transformation kinetics. Acta Mater., 2009, 57, 6176.

[26]

Črvinka L, Dusil J. Determination of crystallinity in crystallized glasses by X-ray diffraction. J. Non Cryst. Solids, 1976, 21, 125.

[27]

Cullity BD, Stock SR. Elements of X-ray Diffraction, 2001 3rd Ed. London, Prentice Hall

[28]

Berezhnoi AI, Krasnikov AS. A method for determining the quantitative content of phases in glass-ceramics. Glass Ceram., 2004, 61, 180.

[29]

Khonthon S, Morimoto S, Ohishi Y. Absorption and emission spectra of Ni-doped glasses and glass-ceramics in connection with its Co-ordination number. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 2006, 114, 791.

[30]

Li YH, Liang K M, Cao JW, Xu B. Spectroscopy and structural state of V4+ ions in lithium aluminosilicate glass and glass-ceramics. J. Non Cryst. Solids, 2010, 356, 502.

[31]

Feng GF, Zhou SF, Bao JX, Wang X, Xu SQ, Qiu JR. Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence. J. Alloys Compd., 2008, 457, 506.

[32]

Rani S, Sanghi S, Agarwal A, Seth VP. Study of optical band gap and FTIR spectroscopy of Li2O·Bi2O3· P2O5 glasses. Spectrochim. Acta Part A, 2009, 74, 673.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/