Frequency dependence of magnetization and giant magneto impedance effect of amorphous wires

Shu-ling Zhang , Jian-fei Sun , Da-wei Xing , Da-qing Fang , Lu-cai Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (4) : 375 -378.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (4) : 375 -378. DOI: 10.1007/s12613-013-0738-z
Article

Frequency dependence of magnetization and giant magneto impedance effect of amorphous wires

Author information +
History +
PDF

Abstract

The frequency dependence of magnetization process and giant magneto impedance (GMI) effect of Co-rich melt-extracted amorphous wires was studied by Kerr effect and impedance analyzer, respectively. It is demonstrated that the transverse Kerr intensity and the corresponding GMI response increase with increasing frequency, which contributes to the upgraded skin effect. However, the skin depth has a slothful trend with frequency when it is up to the megahertz range, which gives rise to the transformation of magnetization. The process is much more sensitive to the direct current magnetic field and the sensitive change of the circular permeability, and GMI response is observed as its consequence. This proves that the evolution of circumferential magnetization and the corresponding permeability with the direct current magnetic field is the essence of GMI response, and a much more sensitive magnetization promises a better GMI response.

Keywords

amorphous wires / magnetization / giant magneto impedance / Kerr magneto-optical effect / melt extraction

Cite this article

Download citation ▾
Shu-ling Zhang, Jian-fei Sun, Da-wei Xing, Da-qing Fang, Lu-cai Wang. Frequency dependence of magnetization and giant magneto impedance effect of amorphous wires. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(4): 375-378 DOI:10.1007/s12613-013-0738-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mohri K, Kohzawa T, Kawashima K, Yoshida H, Panina LV. Magneto-inductive effect (MI effect) in amorphous wires. IEEE Trans. Magn., 1992, 28(5): 3150.

[2]

Beach RS, Berkowitz AE. Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett., 1994, 64(26): 3652.

[3]

Kamruzzaman Md, Rahman IZ, Rahman MA. A review on magneto-impedance effect in amorphous magnetic materials. J. Mater. Process. Technol., 2001, 119(1–3): 312.

[4]

Phan MH, Peng HX. Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci., 2008, 53(2): 323.

[5]

Wang WJ, Yuan HM, Jiang S, Xiao SQ, Yan SS. Transverse giant magneto-impedance effect in FeCu-CrVSiB single layered and multilayered films. Acta Phys. Sin., 2006, 55(11): 6108.

[6]

Man Q, Fang Y, Sun H, Ye F. Influence of DC Joule heating treatment on the GMI effect in Fe-Co-Nb-Si-B ribbons. Proceedings of the Sixth International Conference on Thin Film Physics and Applications, 2008

[7]

Zhukov A, Ipatov M, Gonzalez J, Blanco JM, Zhukova V. Recent advances in studies of magnetically softa morphous microwires. J. Magn. Magn. Mater., 2009, 321(7): 822.

[8]

Melo LGC, Menard D, Yelon A, Ding L, Saez S, Colabdjian D. Optimization of the magnetic noise and sensitivity of giant magnetoimpedance sensors. J. Appl. Phys., 2008, 103(3): art. No. 033903.

[9]

Zhang SL, Sun JF, Xing DW. Influence of field annealng on giant magneto-impedance effect of Co-based melt extraction amorphous wires. Acta Phys. Sin., 2010, 59(3): 2062.

[10]

Zhang GH, Li X, Wang QJ, Yuan WZ, Yang YL, Zhao ZJ. Dependence of the driving current on the GMI properties of composite wires. J. Funct. Mater., 2008, 39(8): 1283.

[11]

J. Appl. Phys., 2006, 99(3)

[12]

Aragoneses P, Zhukov AP, Gonzalez J, Blanco JM, Dominguez L. Effect of AC driving current on magnetoimpedance effect. Sens. Actuators A, 2000, 81(1): 86.

[13]

Chen AP, Britel MR, Zhukova V, Zhukov A, Dominguez L, Chizhik A, Blanco JM, González J. Influence of AC magnetic field amplitude on the surface magnetoimpedance tensor in amorphous wire with helical magnetic anisotropy. IEE Trans. Magn., 2004, 40(5): 3368.

[14]

Chizhik A, Zhukov A, Stupakiewicz A, Maziewski A, Blanco JM, Gonzalez J. Kerr microscopy study of magnetic domain structure changes in amorphous microwires. IEEE Trans. Magn., 2009, 45(10): 4279.

[15]

Chizhik A., Zhukov A., Gonzalez J., Blanco J.M. Control of domain nucleation in glass covered amorphous microwires. J. Appl. Phys., 2009, 105, 123911.

[16]

Wang H, Xing DW, Wang XD, Sun JF. Fabrication and characterization of melt-extracted Co-based amorphous wires. Metall. Mater. Trans. A, 2011, 42(4): 1103.

[17]

Chizhik A, Zhukov A, Blanco JM, Gonzalez J. Kerr effect as method of investigation of magnetization reversal in amorphous wires. Phys. Status Solidi A, 2002, 189(3): 625.

[18]

Chen DX, Pascual L, Castano FJ, Vazquez M, Hernando A. Revised core-shell domain model for magnetostrictive amorphous wires. IEEE Trans. Magn., 2001, 37(2): 994.

[19]

Acta Phys. Sin., 2011, 60(3)

[20]

Rudkowski P, Strom-Olsen JO. Frequency, magnetic field and size dependence of the magnetic properties of amorphous soft-magnetic fibers. J. Magn. Magn. Mater., 2002, 249(1–2): 85.

[21]

Chizhik A, Gonzalez J, Yamasaki J, Zhukov A, Blanco JM. Vortex-type domain structure in Co-rich amorphous wires. J. Appl. Phys., 2004, 95(5): 2933.

[22]

Vazquez M, Chen DX. The magnetization reversal process in amorphous wires. IEEE Trans. Magn., 1995, 31(2): 1229.

[23]

Lachowicz HK, Garcia KL, Kuzminski M, Zhukov A, Vazquez M. Skin-effect and circumferential permeability in micro-wires utilized in GMI-sensors. Sens. Actuators A, 2005, 119(2): 384.

[24]

Vazquez M, Li YF, Chen DX. Influence of the sample length and profile of the magnetoimpedance effect in FeCrSiBCuNb ultrasoft magnetic wires. J. Appl. Phys., 2002, 91, 6539.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/