Fabrication of double-walled carbon nanotube film/TiO2 nanotube array heterojunctions with length-dependent photoresponse for broad band photodetectors

Ming-jie Yang , Wei Liu , Jia-lin Sun , Jin-quan Wei , Jia-lin Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (3) : 307 -312.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (3) : 307 -312. DOI: 10.1007/s12613-013-0728-1
Article

Fabrication of double-walled carbon nanotube film/TiO2 nanotube array heterojunctions with length-dependent photoresponse for broad band photodetectors

Author information +
History +
PDF

Abstract

A novel photodetector based on double-walled carbon nanotube (DWCNT) film/TiO2 nanotube array (TNA) heterojunctions was fabricated, which exhibited high photoresponse in a broad spectral range. The photoresponse of the detector was dramatically dependent on the length of the TNAs. High photocurrent-to-dark current ratio with a value of 3360 was observed in the visible range by optimizing the lengths of the TNAs. The photosensitive regions could be extended into the near-infrared range. These results reveal that DWCNT film/TNA heterojunctions show potential applications for broad band photodetectors.

Keywords

photodetectors / titanium dioxide / carbon nanotubes / heterojunctions

Cite this article

Download citation ▾
Ming-jie Yang, Wei Liu, Jia-lin Sun, Jin-quan Wei, Jia-lin Zhu. Fabrication of double-walled carbon nanotube film/TiO2 nanotube array heterojunctions with length-dependent photoresponse for broad band photodetectors. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(3): 307-312 DOI:10.1007/s12613-013-0728-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37.

[2]

Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269.

[3]

Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials, 2002, 23(2): 491.

[4]

Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett., 2006, 6(2): 215.

[5]

Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology, 2006, 17(2): 398.

[6]

Kang TS, Smith AP, Taylor BE, Durstock MF. Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett., 2009, 9(2): 601.

[7]

Huang HL, Xie YN, Yang WF, Zhang F, Cai JF, Wu ZY. Low-dark-current TiO2 MSM UV photodetectors With Pt schottky contacts. IEEE Electr. Device Lett., 2011, 32(4): 530.

[8]

Huang HL, Yang WF, Xie YN, Chen XP, Wu ZY. Metal-semiconductor-metal ultraviolet photodetectors based on TiO2 films deposited by radio-frequency magnetron Sputtering. IEEE Electr. Device Lett., 2010, 31(6): 588.

[9]

Appl. Phys. Lett., 2009, 94(12)

[10]

J. Phys. D, 2011, 44(37)

[11]

Appl. Phys. Lett., 2007, 90(20)

[12]

Liu KW, Sakurai M, Aono M. ZnO-based ultraviolet photodetectors. Sensors, 2010, 10(9): 8604.

[13]

Bekyarova E, Itkis ME, Cabrera N, Zhao B, Yu AP, Gao JB, Haddon RC. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc., 2005, 127(16): 5990.

[14]

Chaudhary S, Lu HW, Müller AM, Bardeen CJ, Ozkan M. Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells. Nano Lett., 2007, 7(7): 1973.

[15]

Appl. Phys. Lett., 2006, 88(18)

[16]

Shen C, Brozena AH, Wang YH. Double-walled carbon nanotubes: challenges and opportunities. Nanoscale, 2011, 3(2): 503.

[17]

Appl. Phys. Lett., 2006, 88(13)

[18]

Avouris P, Freitag M, Perebeinos V. Carbonnanotube photonics and optoelectronics. Nat. Photonics, 2008, 2(6): 341.

[19]

Arnold MS, Zimmerman JD, Renshaw CK, Xu X, Lunt RR, Austin CM, Forrest SR. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. Nano Lett., 2009, 9(9): 3354.

[20]

Zhu K, Neale NR, Miedaner A, Frank AJ. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett., 2007, 7(1): 69.

[21]

Nanotechnology, 2008, 19(25)

[22]

Jose R, Thavasi V, Ramakrishna S. Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc., 2009, 92(2): 289.

[23]

Wei JQ, Jiang B, Wu DH, Wei BQ. Large-scale synthesis of long double-walled carbon nanotubes. J. Phys. Chem. B, 2004, 108(26): 8844.

[24]

Yang MJ, Zhu JL, Liu W, Sun JL. Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts. Nano Res., 2011, 4(9): 901.

[25]

Wei JQ, Sun JL, Zhu JL, Wang KL, Wang ZC, Luo JB, Wu DH, Cao AY. Carbon nanotube macrobundles for light sensing. Small, 2006, 2(8–9): 988.

[26]

Cheng K., Cheng G., Wang S.J., Li L.S., Dai S.X., Zhang X.T., Zou B.S., Du Z.L. Surface states dominative Au Schottky contact on vertical aligned ZnO nanorod arrays synthesized by low-temperature growth. New J. Phys., 2007, 9, 214.

[27]

Yuan GB, Zhao HZ, Liu XH, Hasanali ZS, Zou Y, Levine A, Wang DW. Synthesis and photoelectrochemical study of vertically aligned silicon nanowire arrays. Angew. Chem. Int. Ed., 2009, 48(51): 9680.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/