Effect of FeO on the formation of spinel phases and chromium distribution in the CaO-SiO2-MgO-Al2O3-Cr2O3 system

Jian-li Li , An-jun Xu , Dong-feng He , Qi-xing Yang , Nai-yuan Tian

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (3) : 253 -258.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (3) : 253 -258. DOI: 10.1007/s12613-013-0720-9
Article

Effect of FeO on the formation of spinel phases and chromium distribution in the CaO-SiO2-MgO-Al2O3-Cr2O3 system

Author information +
History +
PDF

Abstract

Synthetic slag samples of the CaO-SiO2-MgO-Al2O3-Cr2O3 system were obtained to clarify the effect of FeO on the formation of spinel phases and Cr distribution. X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), as well as the thermodynamic software FactSage 6.2, were used for sample characterization. The results show that the addition of FeO can decrease the viscosity of molten slag and the precipitation temperatures of melilite and merwinite. The solidus temperature significantly decreases from 1400 to 1250°C with the increase of FeO content from 0wt% to 6wt%. The addition of FeO could enhance the content of Cr in spinel phases and reduce the content of Cr in soluble minerals, such as merwinite, melilite, and dicalcium silicate. Hence, the addition of FeO is conducive to decreasing Cr leaching.

Keywords

stainless steel / slags / spinel phase / chromium / leaching / ferrous oxide

Cite this article

Download citation ▾
Jian-li Li, An-jun Xu, Dong-feng He, Qi-xing Yang, Nai-yuan Tian. Effect of FeO on the formation of spinel phases and chromium distribution in the CaO-SiO2-MgO-Al2O3-Cr2O3 system. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(3): 253-258 DOI:10.1007/s12613-013-0720-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu YJ, Jiang ZH, Liang LK, Jiang MF, Huang ZZ, Chen ZP. Calculation of some related thermodynamic problems in stainless steel refining process (I): thermodynamics of raw material pretreatment. J. Iron Steel Res., 2003, 15(3): 1.

[2]

Lee Y, Nassaralla CL. Formation of hexavalent chromium by reaction between slag and magnesite-chrome refractory. Metall. Mater. Trans. B, 1998, 29(2): 405.

[3]

Lee YM, Nassaralla CL. Standard free energy of formation of calcium chromate. Mater. Sci. Eng. A, 2006, 437(2): 334.

[4]

Erdem M, Altundoğan HS, Turan MD, Tümen F. Hexavalent chromium removal by ferrochromium slag. J. Hazard. Mater., 2005, 126(1–3): 176.

[5]

Pillay K, Blottnitz HV, Petersen J. Ageing of chromium(III)-bearing slag and its relation to the atmospheric oxidation of solid chromium(III)-oxide in the presence of calcium oxide. Chemosphere, 2003, 52(10): 1771.

[6]

Albertsson GJ. Investigations of Stabilization of Cr in Spinel Phase in Chromium-containing Slags, 2011 7.

[7]

Samada Y, Miki T, Hino M. Prevention of chromium elution from stainless steel slag into seawater. ISIJ Int., 2011, 51(5): 728.

[8]

García-Ramos E, Romero-Serrano A, Zeifert B, Flores-Sánchez P, Hallen-López M, Palacios EG. Immobilization of chromium in slags using MgO and Al2O3. Steel Res. Int., 2008, 79(5): 332.

[9]

Tossavainen M, Engstrom F, Yang Q, Menad N, Larsson ML, Bjorkman B. Characteristics of steel slag under different cooling conditions. Waste Manage., 2007, 27(10): 1335.

[10]

Engström F, Adolfsson D, Yang Q, Samuelsson C, Björkman B. Crystallization behaviour of some steelmaking slags. Steel Res. Int., 2010, 81(5): 362.

[11]

Jelkina G, Teng L, Bjorkman B, Seetharaman S. Effect of low oxygen partial pressure on the chromium partition in CaO-MgO-SiO2-Cr2O3-Al2O3 synthetic slag at elevated temperature. 9th International Conference on Molten Slags, Fluxes and Salts, 2012 46.

[12]

Mudersbach D, Drissen P, Motz H. Improved slag qualities by liquid slag treatment. 2nd International Slag Valorization Symposium, 2011 299.

[13]

http://www.factsage.com.

[14]

Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Mahfoud RB, Melançon J, Pelton AD, Petersen S. FactSage thermochemical software and databases. Calphad, 2002, 26(2): 189.

[15]

Fredericci C, Zanotto ED, Ziemath EC. Crystallization mechanism and properties of a blast furnace slag glass. J. Non Cryst. Solids, 2007, 273(1–3): 64.

[16]

Merlini M, Gemmi M, Artioli G. Thermal expansion and phase transitions in akermanite and gehlenite. Phys. Chem. Miner., 2005, 32(3): 189.

[17]

Swainson I P, Dove MT, Schmahl WW, Putnis A. Neutron powder diffraction study of the akermanitegehlenite solid solution series. Phys. Chem. Miner., 1992, 19, 185.

[18]

Zhao L Q. Brief table of isomorphic replacement. Gold Geol., 1996, 2(4): 39.

[19]

Qu Y. Mass transfer coefficients in metallurgical reactors. J. Univ. Sci. Technol. Beijing, 2003, 10(2): 1.

[20]

Gaskell T. Self-diffusion in liquid metals: A generalized Stokes-Einstein equation. J. Non Cryst. Solids, 1984, 61–62, 913.

[21]

Shu QF, Zhang JY. Viscosity estimation for slags containing calcium fluoride. J. Univ. Sci. Technol. Beijing, 2005, 12(3): 221.

[22]

Kuehn M, Mudersbach D. Treatment of liquid EAFslag from stainless steel-making to produce environmental friendly construction materials. SCANMET II-2nd International Conference on Process Development in Iron and Steelmaking, 2004 369.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/