Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive

Tanakorn Phoo-ngernkham , Prinya Chindaprasirt , Vanchai Sata , Saengsuree Pangdaeng , Theerawat Sinsiri

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 214 -220.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 214 -220. DOI: 10.1007/s12613-013-0715-6
Article

Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive

Author information +
History +
PDF

Abstract

The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by mass of binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture: NaOH 10 mol/L, Na2SiO3/NaOH with a mass ratio of 2.0, and alkaline liquid/binder (L/B) with a mass ratio of 0.6. The curing at 60°C for 24 h was used to accelerate the geopolymerization. The setting time of all fresh pastes, porosity, and compressive strength of the pastes at the stages of 1, 7, 28, and 90 d were tested. The elastic modulus and strain capacity of the pastes at the stage of 7 d were determined. It is revealed that the use of OPC as an additive to replace part of FA results in the decreases in the setting time, porosity, and strain capacity of the paste specimens, while the compressive strength and elastic modulus seem to increase.

Keywords

geopolymers / Portland cement / fly ash / compressive strength / porosity / elastic moduli

Cite this article

Download citation ▾
Tanakorn Phoo-ngernkham, Prinya Chindaprasirt, Vanchai Sata, Saengsuree Pangdaeng, Theerawat Sinsiri. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(2): 214-220 DOI:10.1007/s12613-013-0715-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. McCaffrey, Climate change and the cement industry, Global Cem. Lime Mag., 2002, Environ. Spec. Iss., p. 15.

[2]

Davidovits J. Geopolymers: inorganic polymeric new ma terials. J. Therm. Anal., 1991, 37(8): 1633.

[3]

Rukzon S., Chindaprasirt P. Mathematical model of strength and porosity of ternary blend Portland rice husk ash and fly ash cement mortar. Comput. Concr., 2008, 5(1): 1.

[4]

Yeh I.C. Modelling slump of concrete with fly ash and superplasticizer. Comput. Concr., 2008, 5(6): 559.

[5]

Chindaprasirt P., Chareerat T., Sirivivatnanon V. Workability and strength of coarse high calcium fly ash geopolymer. Cem. Concr. Compos., 2007, 29(3): 224.

[6]

Rattanasak U., Pankhet K., Chindaprasirt P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. Int. J. Miner. Metall. Mater., 2011, 18(3): 364.

[7]

Guo X.L., Shi H.S., Dick W.A. Compressive strength and microstructural characteristics of Class C fly ash geopolymer. Cem. Concr. Compos., 2010, 32(2): 142.

[8]

Somna K., Jaturapitakkul C., Kajitvichyanukul P., Chindaprasirt P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 2011, 90(6): 2118.

[9]

Temuujin J., van Riessen A. Effect of fly ash preliminary calcination on the properties of geopolymer. J. Hazard. Mater., 2009, 164(2–3): 634.

[10]

Tailby J., MacKenzie K.J.D. Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals. Cem. Concr. Res., 2010, 40(5): 787.

[11]

Bakharev T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res., 2006, 36, 1134.

[12]

Panias D., Giannopoulou I.P., Perraki T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. A, 2007, 301(1–3): 246.

[13]

Sathonsaowaphak A., Chindaprasirt P., Pimraksa K. Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater., 2009, 168(1): 44.

[14]

ASTM C191. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, 2008, Philadelphia, American Society for Testing and Materials

[15]

ASTM C109. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in or [50 mm] Cube Specimens), 2002, Philadelphia, American Society for Testing and Materials

[16]

ASTM C642. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, 2006, Philadelphia, American Society for Testing and Materials

[17]

Chindaprasirt P., Rukzon S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr. Build. Mater., 2008, 22(8): 1601.

[18]

Gonen T., Yazicioglu S. The influence of compaction pores on sorptivity and carbonation of concrete. Constr. Build. Mater., 2007, 21(5): 1040.

[19]

Rossignolo J.A., Agnesini M.V.C. Durability of polymer-modified lightweight aggregate concrete. Cem. Concr. Compos., 2004, 26(4): 375.

[20]

Thokchom S., Ghosh P., Ghosh S. Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. J. Eng. Appl. Sci., 2009, 4(7): 28.

[21]

Yip C.K., van Deventer J.S.J. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J. Mater. Sci., 2003, 38(18): 3851.

[22]

Garcia-Lodeiro I., Palomo A., Fernández-Jiménez A., MacPhee D.E. Compatibility studies between N-A-S-H and C-A-S-H gels: study in the ternary diagram Na2OCaO-Al2O3-SiO2-H2O. Cem. Concr. Res., 2011, 41(9): 923.

[23]

Hewlett P.C. Cement Admixtures: Use and Applications, 1988, Essex, Longman, 3.

[24]

P. Duxson, G.C. Lukey, and J.S.J. Van De Venter, Geopolymer, Green Chemistry and Sustainable Development Solutions, [in] Proceedings of the World Congress of Geopolymer 2005, St Quentin, 2006, p. 180.

[25]

Dombrowski K., Buchwald A., Weil M. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J. Mater. Sci., 2007, 42(9): 3033.

[26]

Guo X.L., Shi H.S., Chen L.M., Dick W.A. Alkaliactivated complex binders from Class C fly ash and Cacontaining admixtures. J. Hazard. Mater., 2010, 173(1–3): 480.

[27]

Yip C.K., Lukey G.C., Van Deventer J.S.J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res., 2005, 35(9): 1688.

[28]

Kroehong W., Sinsiri T., Jaturapitakkul C., Chindaprasirt P. Effect of palm oil fuel ash fineness on the microstructure of blended cement paste. Constr. Build. Mater., 2011, 25(11): 4095.

[29]

Wongpa J., Kiattikomol K., Jaturapitakkul C., Chindaprasirt P. Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater. Des., 2010, 31(10): 4748.

[30]

S. Astutiningsih and Y. Liu, Geopolymersation of Australian Slag with Effective Dissolution by the Alkaline, [in] Proceedings of the World Congress of Geopolymer 2005, St Quentin, 2005, p. 69.

[31]

Dutta D., Thokchom S., Ghosh P., Ghosh S. Effect of silica fume additions on porosity of fly ash geopolymers. J. Eng. Appl. Sci., 2010, 5(10): 74.

[32]

García Lodeiro I., Fernández-Jimenez A., Palomo A., Macphee D.E. Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res., 2010, 40(1): 27.

[33]

ASTM C469. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, 2002, Philadelphia, American Society for Testing and Materials

[34]

Cook D.J., Chindaprasirt P. A mathematical model for the prediction of damage in concrete. Cem. Concr. Res., 1981, 11(4): 581.

[35]

Feldman R.F., Huang C.Y. Properties of Portland cement-silica fume pastes II: mechanical properties. Cem. Concr. Res., 1985, 15(6): 943.

[36]

ACI Standard 318. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, 2008, Farmington Hills, American Concrete Institute Committee, 456.

[37]

Chindaprasirt P. Influence of Load History on the Properties of Concrete, 1980, Sydney, The University of New South Wales

[38]

Duxson P., Provis J.L., Lukey G.C., van Deventer J.S.J. The role of inorganic polymer technology in the development of ”green concrete”. Cem. Concr. Res., 2007, 37(12): 1590.

[39]

Day R.L., Marsh B.K. Measurement of porosity in blended cement pastes. Cem. Concr. Res., 1988, 18(1): 63.

[40]

Škvára F., Kopecký L., Němeček J., Bittnar Z. Microstructure of geopolymer materials based on fly ash. Ceram. Silik, 2006, 50(4): 208.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/