Morphology controllable growth of CaO/amorphous carbon ropes by a hydrothermal approach

Yong Zhang , Fang Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 187 -195.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 187 -195. DOI: 10.1007/s12613-013-0712-9
Article

Morphology controllable growth of CaO/amorphous carbon ropes by a hydrothermal approach

Author information +
History +
PDF

Abstract

A versatile hydrothermal strategy for the growth of a centimeter-sized CaO/amorphous carbon rope was introduced in this article. It is demonstrated that the centimeter-sized rope is composed of abundant amorphous carbon “belt” and “stick” with small polygonal CaO particles in the size of 3.0–5.0 nm embedded in the “belt” and “stick” framework. With the increase in NaOH amount, polygonal Ca(OH)2 particles in the size of 0.5–3.0 μm are found, instead of the CaO/amorphous carbon rope. This morphology evolution results from the competition of structure-directing and hydrothermal-carbonizing of organic agents during hydrothermal reaction. These results may give good suggestions for the controllable growth of newly unique morphological micro/nano architectures in solution phase reactions.

Keywords

amorphous carbon / rope / calcium oxide / hydrothermal synthesis

Cite this article

Download citation ▾
Yong Zhang, Fang Liu. Morphology controllable growth of CaO/amorphous carbon ropes by a hydrothermal approach. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(2): 187-195 DOI:10.1007/s12613-013-0712-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang M., Atkinson K.R., Baughman R.H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306(5700): 1358.

[2]

Dorozhkin P., Golberg D., Bando Y., Dong Z.C. Field emission from individual B-C-N nanotube rope. Appl. Phys. Lett., 2002, 81(6): 1083.

[3]

Li Y.H., Zhao Y.M., Zhu Y.Q., Rodriguez J., Morante J.R., Mendoza E., Poa C.H.P., Silva S.R.P. Mechanical and NH3 sensing properties of long multi-walled carbon nanotube ropes. Carbon, 2006, 44(9): 1821.

[4]

Mendoza E., Rodriguez J., Li Y., Zhu Y.Q., Poa C.H.P., Henley S.J., Romano-Rodriguez A., Morante J.R., Silva S.R.P. Effect of the nanostructure and surface chemistry on the gas adsorption properties of macroscopic multiwalled carbon nanotube ropes. Carbon, 2007, 45(1): 83.

[5]

Ren W.C., Cheng H.M. Aligned double-walled carbon nanotube long ropes with a narrow diameter distribution. J. Phys. Chem. B, 2005, 109(15): 7169.

[6]

Li Y.L., Kinloch I.A., Windle A.H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304(5668): 276.

[7]

L.Q. Liu, M. Eder, I. Burgert, D. Tasis, M. Prato, and H.D. Wagner, One-step electrospun nanofiber-based composite ropes, Appl. Phys. Lett., 90(2007), No. 8, article No. 083108.

[8]

Remškar M., Škraba Z., Regula M., Ballif C., Sanjinés R., Lévy F. New crystal structures of WS2: microtubes, ribbons, and ropes. Adv. Mater., 1998, 10(3): 246.

[9]

Jin M.S., Kuang Q., Jiang Z.Y., Xu T., Xie Z.X., Zheng L.S. Direct synthesis of silver/polymer/carbon nanocables via a simple hydrothermal route. J. Solid State Chem., 2008, 181(9): 2359.

[10]

Cheng B., Samulski E.T. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem. Commun., 2004, 10(8): 986.

[11]

Wang Z.L., Feng X.D. Polyhedral shapes of CeO2 nanoparticles. J. Phys. Chem. B, 2003, 107(49): 13563.

[12]

Cui X.J., Antonietti M., Yu S.H. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small, 2006, 2(6): 756.

[13]

Hu B., Wang K., Wu L.H., Yu S.H., Antonietti M., Titirici M.M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater., 2010, 22(7): 813.

[14]

B. Hu, S.H. Yu, K. Wang, L. Liu, and X.W. Xu, Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process, Dalton Trans., 2008, No. 40, p. 5414.

[15]

Liu F., Zhang Y. Hydrothermal growth of flower-like CaO for biodiesel production. Ceram. Int., 2012, 38(4): 3473.

[16]

Cao H.L., Qian X.F., Wang C., Ma X.D., Yin J., Zhu Z.K. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J. Am. Chem. Soc., 2005, 127(46): 16024.

[17]

Xu F., Lu Y.N., Xie Y., Liu Y.F. Controllable morphology evolution of electrodeposited ZnO nano/microscale structures in aqueous solution. Mater. Des., 2009, 30(5): 1704.

[18]

Yu S.H., Yoshimura M. Shape and phase control of ZnS nanocrystals: template fabrication of Wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH2CH2CH2NH2)0.5. Adv. Mater., 2002, 14(4): 296.

[19]

Yang J., Zeng J.H., Yu S.H., Yang L., Zhou G.E., Qian Y.T. Formation process of CdS nanorods via solvothermal route. Chem. Mater., 2000, 12(11): 3259.

[20]

Albuquerque M.C.G., Azevedo D.C.S., Cavalcante C.L.Jr. Santamaría-González J., Mérida-Robles J.M., Moreno-Tost R., Rodríguez-Castellón E., Jiménez-López A., Maireles-Torres P. Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. J. Mol. Catal. A, 2009, 300(1–2): 19.

[21]

Alba-Rubio A.C., Santamaría-González J., Robles J.M. M.-, Moreno-Tost R., Martín-Alonso D., López A. J.-, Maireles-Torres P. Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catal. Today, 2010, 149(3–4): 281.

[22]

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 2009, New Jersey, John Wiley & Sons, Inc., 170.

[23]

Sau T.K., Murphy C.J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir, 2005, 21(7): 2923.

[24]

Shan Z.W., Stach E.A., Wiezorek J.M.K., Knapp J.A., Follstaedt D.M., Mao S.X. Grain boundary-mediated plasticity in nanocrystalline nickel. Science, 2004, 305(5684): 654.

[25]

Kondo T., Khasanov R., Takeuchi T., Schmalian J., Kaminski A. Competition between the pseudogap and superconductivity in the high-T c copper oxides. Nature, 2009, 457(7227): 296.

[26]

Chen C.L., Wei Y.L., Jiao X.L., Chen D.R. Hydrothermal synthesis of BaTiO3: crystal phase and the Ba2+ ions leaching behavior in aqueous medium. Mater. Chem. Phys., 2008, 110(1): 186.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/