Spark plasma and microwave sintering of Al6061 and Al2124 alloys

Nouari Saheb

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 152 -159.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 152 -159. DOI: 10.1007/s12613-013-0707-6
Article

Spark plasma and microwave sintering of Al6061 and Al2124 alloys

Author information +
History +
PDF

Abstract

Despite the importance of aluminum alloys as candidate materials for applications in aerospace and automotive industries, very little work has been published on spark plasma and microwave processing of aluminum alloys. In the present work, the possibility was explored to process Al2124 and Al6061 alloys by spark plasma and microwave sintering techniques, and the microstructures and properties were compared. The alloys were sintered for 20 min at 400, 450, and 500°C. It is found that compared to microwave sintering, spark plasma sintering is an effective way to obtain homogenous, dense, and hard alloys. Fully dense (100%) Al6061 and Al2124 alloys were obtained by spark plasma sintering for 20 min at 450 and 500°C, respectively. Maximum relative densities were achieved for Al6061 (92.52%) and Al2124 (93.52%) alloys by microwave sintering at 500°C for 20 min. The Vickers microhardness of spark plasma sintered samples increases with the increase of sintering temperature from 400 to 500°C, and reaches the values of Hv 70.16 and Hv 117.10 for Al6061 and Al2124 alloys, respectively. For microwave sintered samples, the microhardness increases with the increase of sintering temperature from 400 to 450°C, and then decreases with the further increase of sintering temperature to 500°C.

Keywords

aluminum alloys / spark plasma sintering / microwave sintering / microstructure / hardness / density

Cite this article

Download citation ▾
Nouari Saheb. Spark plasma and microwave sintering of Al6061 and Al2124 alloys. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(2): 152-159 DOI:10.1007/s12613-013-0707-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu C.Y., Jia S.S., Cao Z.Y. Synthesis of Al-Mn-Ce alloy by the spark plasma sintering. Mater. Charact., 2005, 54(4–5): 394.

[2]

Shi X.L., Yang H., Wang S. Spark plasma sintering of W-15Cu alloy from ultrafine composite powder prepared by spray drying and calcining-continuous reduction technology. Mater. Charact., 2009, 60(2): 133.

[3]

Oghbaei M., Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd., 2010, 494(1–2): 175.

[4]

Clark D.E., Folz D.C., West J.K. Processing materials with microwave energy. Mater. Sci. Eng.A, 2000, 287(2): 153.

[5]

Thostenson E.T., Chou T.W. Microwave processing: fundamentals and applications. Compos. Part A, 1999, 30(9): 1055.

[6]

Leonelli C., Veronesi P., Denti L., Gatto A., Iuliano L. Microwave assisted sintering of green metal parts. J. Mater. Process. Technol., 2008, 205(1–3): 489.

[7]

Walkiewicz J.W., Kazonich G., McGill S.L. Microwave heating characteristics of selected minerals and compounds. Miner. Metall. Process., 1988, 5(1): 39.

[8]

Matsugi K., Ishibashi N., Hatayama T., Yanagisawa O. Microstructure of spark sintered titanium-aluminide compacts. Intermetallics, 1996, 4(6): 457.

[9]

Feng H.B., Zhou Y., Jia D.C., Meng Q.C. Rapid synthesis of Ti alloy with B addition by spark plasma sintering. Mater. Sci. Eng. A, 2005, 390(1–2): 344.

[10]

Shearwood C., Fu Y.Q., Yu L., Khor K.A. Spark plasma sintering of TiNi nano-powder. Scripta Mater., 2005, 52(6): 455.

[11]

Lu X., He X.B., Zhang B., Zhang L., Qu X.H., Guo Z.X. Microstructure and mechanical properties of a spark plasma sintered Ti-45Al-8.5Nb-0.2W-0.2B-0.1Y alloy. Intermetallics, 2009, 17(10): 840.

[12]

Couret A., Molénat G., Galy J., Thomas M. Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering. Intermetallics, 2008, 16(9): 1134.

[13]

Xiao S.L., Tian J., Xu L.J., Chen Y.Y., Yu H.B., Han J.C. Microstructures and mechanical properties of TiAl alloy prepared by spark plasma sintering. Trans. Nonferros Met. Soc. China, 2009, 19(6): 1423.

[14]

Murakami T., Kitahara A., Koga Y., Kawahara M., Inui H., Yamaguchi M. Microstructure of Nb-Al powders consolidated by spark plasma sintering process. Mater. Sci. Eng. A, 1997, 240(1–2): 672.

[15]

Murakamia T., Xu C.N., Kitahara A., Kawahara M., Takahashi Y., Inui H., Yamaguchi M. Microstructure, mechanical properties and oxidation behavior of powder compacts of the Nb-Si-B system prepared by spark plasma sintering. Intermetallics, 1999, 7(9): 1043.

[16]

Ye L.L., Liu Z.G., Raviprasad K., Quan M.X., Umemoto M., Hu Z.Q. Consolidation of MA amorphous NiTi powders by spark plasma sintering. Mater. Sci. Eng. A, 1998, 241(1–2): 290.

[17]

Kim C.K., Lee H.S., Shin S.Y., Lee J.C., Kim D.H., Lee S. Microstructure and mechanical properties of Cu-based bulk amorphous alloy billets fabricated by spark plasma sintering. Mater. Sci. Eng. A, 2005, 406(1–2): 293.

[18]

Zhang Z.H., Wang F.C., Lee S.K., Liu Y., Cheng J.W., Liang Y. Microstructure characteristic, mechanical properties and sintering mechanism of nanocrystalline copper obtained by SPS process. Mater. Sci. Eng. A, 2009, 523, 134.

[19]

Jia C.C., He Q., Meng J., Guo L.N. Influence of mechanical alloying time on the properties of Fe3Al intermetallics prepared by spark plasma sintering. J. Univ. Sci. Technol. Beijing, 2007, 14(4): 331.

[20]

Holland T.B., Ovidko I.A., Wang H., Mukherjee A.K. Elevated temperature deformation behavior of spark plasma sintered nanometric nickel with varied grain size distributions. Mater. Sci. Eng. A, 2010, 528, 663.

[21]

Ohser-Wiedemann R., Martin U., Seifert H.J., Müller A. Densification behavior of pure molybdenum powder by spark plasma sintering. Int. J. Refract. Met. Hard Mater., 2010, 28(4): 550.

[22]

Sasaki T.T., Mukai T., Hono K. A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scripta Mater., 2007, 57(3): 189.

[23]

Kubota M. Properties of nano-structured pure Al produced by mechanical grinding and spark plasma sintering. J. Alloys Compd., 2007, 434–435, 294.

[24]

Sasaki T.T., Ohkubo T., Hono K. Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater., 2009, 57, 3529.

[25]

Chen H.B., Tao K., Yang B., Zhang J.S. Nanostructured Al-Zn-Mg-Cu alloy synthesized by cryomilling and spark plasma sintering. Trans. Nonferros Met. Soc. China, 2009, 19, 1110.

[26]

Rana J.K., Sivaprahasam D., Raju K. S., Subramanya Sarma V. Microstructure and mechanical properties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by high energy ball milling and spark plasma sintering. Mater. Sci. Eng. A, 2009, 527, 292.

[27]

R. Roy, D.K. Arawal, and J. Cheng, Process for Sintering Powder Metal Components, US Patent, Appl.6183689 B1, 2001.

[28]

Anklekar R.M., Agrawal D.K., Roy R. Microwave sintering and mechanical properties of PM copper steel. Powder Metall., 2001, 44(4): 355.

[29]

Anklekar R.M., Bauer K., Agrawal D.K., Roy R. Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall., 2005, 48(1): 39.

[30]

Saitou K. Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders. Scripta Mater., 2006, 54(5): 875.

[31]

Mascarenhas J., Marcelo T., Inverno A., Castanho J., Vieira T. Microwaves show off their advantages in efficient sintering. Met. Powder Rep., 2008, 63(11): 12.

[32]

Prabhu G., Chakraborty A., Sarma B. Microwave sintering of tungsten. Int. J. Refract. Met. Hard Mater., 2009, 27(3): 545.

[33]

Mondal A., Agrawal D., Upadhyaya A. Microwave heating of pure copper powder with varying particle size and porosity. J. Microw. Power Electromagn. Energy, 2009, 43(1): 5.

[34]

Zhou C.S., Yi J.H., Luo S.D., Peng Y.D., Li L.Y., Chen G. Effect of heating rate on the microwave sintered WNi-Fe heavy alloys. J. Alloys Compd., 2009, 482(1–2): L6.

[35]

Demirskyi D., Agrawal D., Ragulya A. Neck growth kinetics during microwave sintering of nickel powder. J. Alloys Compd., 2011, 509, 1790.

[36]

Nawathe S., Wong W.L.E., Guptac M. Using microwaves to synthesize pure aluminum and metastable Al/Cu nanocomposites with superior properties. J. Mater. Process. Technol., 2009, 209, 4890.

[37]

Gupta M., Wong W.L.E. Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scripta Mater., 2005, 52, 479.

[38]

Thakur S.K., Kong T.S., Gupta M. Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti + SiC) composites. Mater. Sci. Eng. A, 2007, 452–453, 61.

[39]

Saheb N., Laoui T., Daud A.R., Yahaya R., Radiman S. Microstructure and hardness behaviours of Ticontaining Al-Si alloys. Philos. Mag. A, 2002, 82(4): 803.

[40]

German R.M. Powder Metallurgy Science, 1994, Princeton, Metal Powder Industries Federation

[41]

German R.M. Sintering Theory and Practice, 1996, New York, John Wiley

[42]

Orr`u R., Licheri R., Locci A.M., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R, 2009, 63(4–6): 127.

[43]

Viswanathan V., Laha T., Balani K., Agarwal A., Seal S. Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng. R, 2006, 54, 121.

[44]

Adachi J., Kurosaki K., Uno M., Yamanaka S. Porosity influence on the mechanical properties of polycrystalline zirconium nitride ceramics. J. Nucl. Mater., 2006, 358(2–3): 106.

[45]

Jin X., Gao L., Sun J. Preparation of nanostructured Cr1−xTixN ceramics by spark plasma sintering and their properties. Acta Mater., 2006, 54(15): 4035.

[46]

Kim Y.H., Sekino T., Kusunose T., Nakayama T., Niihara K., Kawaoka H. Electrical and mechanical properties of K, Ca ionic-conductive silicon nitride ceramics. Ceram. Trans., 2005, 165, 31.

[47]

Metaxas A.C., Meredith R.J. Industrial Microwave Heating, 1983, London, Peter Pregrinus, Ltd.

[48]

Gupta M., Wong W.L.E. Microwaves and Metals, 2007, Singapore, John Wiley & Sons

[49]

Nouari S., Daud A.R. Effect of Ti and Sb additions on Al-10.5wt% Si alloy. J. Mater. Sci. Technol., 2000, 8(4): 209.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/