Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans

Ying-bo Dong , Hai Lin , Kai-bin Fu , Xiao-fang Xu , Shan-shan Zhou

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 119 -124.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 119 -124. DOI: 10.1007/s12613-013-0702-y
Article

Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans

Author information +
History +
PDF

Abstract

Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with Acidithiobacillus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.

Keywords

chalcopyrite / bioleaching / adsorption / functional groups

Cite this article

Download citation ▾
Ying-bo Dong, Hai Lin, Kai-bin Fu, Xiao-fang Xu, Shan-shan Zhou. Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(2): 119-124 DOI:10.1007/s12613-013-0702-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Harahsheh M., Rutten F., Briggs D., Kingman S. Preferential oxidation of chalcopyrite surface facets characterized by ToF-SIMS and SEM. Appl. Surf. Sci., 2006, 252(19): 7155.

[2]

Xia L.X., Yin C., Dai S.L., Qiu G.Z., Chen X.H., Liu J.S. Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor. J. Ind. Microbiol. Biotechnol., 2010, 37(3): 289.

[3]

Vilinska A., Rao K. H., Forssberg K.S.E. Selective coagulation in chalcopyrite/pyrite mineral system using Acidithiobacillus group bacteria. Adv. Mater. Res., 2007, 20–21, 366.

[4]

Rohwerder T., Gehrke T., Kinzler K., Sand W. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 2003, 63(3): 239.

[5]

Kaewkannetra P., Garcia-Garcia F.J., Chiu T.Y. Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans. Int. J. Miner. Metall. Mater., 2009, 16(4): 368.

[6]

Sand W., Gerke T., Hallmann R., Schippers A. Sulfur chemistry, biofilm, and the (in)direct attack mechanism: a critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol., 1995, 43(6): 961.

[7]

Bevilaqua D., Leite A.L.L.C., Garcia O.Jr. Tuovinen O.H. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochem, 2002, 38(4): 587.

[8]

Qiu M.Q., Xiong S.Y., Zhang W.M. Efficacy of chalcopyrite bioleaching using a pure and a mixed bacterium. J. Univ. Sci. Technol. Beijing, 2006, 13(1): 7.

[9]

Qiu M.Q., Wang G.X., Zhang W.M., Xiong S.Y. Optimizing for bacterial leaching conditions of copper from discarded mines. J. Univ. Sci. Technol. Beijing, 2006, 13(2): 108.

[10]

Sato H., Nakazawa H., Kudo Y. Effect of silver chloride on the bioleaching of chalcopyrite concentrate. Int. J. Miner. Process., 2000, 59(1): 17.

[11]

Gericke M., Pinches A., van Rooyen J.V. Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture. Int. J. Miner. Process., 2001, 62(1–4): 243.

[12]

Sand W., Gehrke T., Jozsa P.G., Schippers A. (Bio)chemistry of bacterial leaching: direct vs. indirect bioleaching. Hydrometallurgy, 2001, 59(2): 159.

[13]

Otero A.P., Curutchet G., Donati E., Tedesco P. Action of Thiobacillus thiooxidans on sulphur in the presence of a surfactant agent and its application in the indirect dissolution of phosphorus. Process Biochem., 1995, 30(8): 747.

[14]

Ohmura N., Kitamura K., Saiki H. Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl. Environ. Microbiol., 1993, 59(12): 4044.

[15]

Chen M.L., Zhang L., Gu G.H., Hu Y.H., Su L.J. Effects of microorganisms on surface properties of chalcopyrite and bioleaching. Trans. Nonferrous Met. Soc. China, 2008, 18(6): 1421.

[16]

Jia C.Y., Wei D.Z., Li P.J., Li X.J., Tai P.D., Liu W., Gong Z.Q. Selective adsorption of Mycobacterium Phlei on pyrite and sphalerite. Colloids Surf., B, 2011, 83(2): 214.

[17]

Cao Y.Y., Wei X., Cai P., Huang Q.Y., Rong X.M., Liang W. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide. Colloids Surf., B, 2011, 83(1): 122.

[18]

Sharma P.K., Hanumantha Rao K. Adhension of Paenibacillus polymyxa on chalcopyrite and pyrite: Surface thermodynamics and extended DLVO theory. Colloids Surf., B, 2003, 29(1): 21.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/